2.6 Exercises

- 1. (a) B (b) D (c) E (d) A (e) C
- 2. (a) E (b) C (c) D (d) A (e) B
- 3. (a) B (b) A (c) G (d) C (e) F
- (f) D (g) H (h) E

- **2.** (**a**) (4, 12) (**b**) (8, 16)
- **3.** (a) (8, 3) (b) (8, 48)
- **4.** (a) (8, -12) (b) (-8, 12)
- 16. 18.
- . y-axis **20.** y-axis
- . x-axis, y-axis, origin
- x-axis, y-axis, origin
- origin 24. origin
- . none of these
- none of these 27. odd
- odd **29.** even **30.** even
- neither 32. neither

1. Concept Check Match each equation in Column I with a description of its graph from Column II as it relates to the graph of $y = x^2$.

- (a) $y = (x 7)^2$
- **(b)** $y = x^2 7$
- (c) $y = 7x^2$
- (d) $y = (x + 7)^2$
- (e) $y = x^2 + 7$

- A. a translation 7 units to the left
- **B.** a translation 7 units to the right
- C. a translation 7 units up
- **D.** a translation 7 units down
- E. a vertical stretch by a factor of 7
- 2. Concept Check Match each equation in Column I with a description of its graph from Column II as it relates to the graph of $y = \sqrt[3]{x}$.

- (a) $y = 4\sqrt[3]{x}$
- **(b)** $y = -\sqrt[3]{x}$
- (c) $y = \sqrt[3]{-x}$
- (d) $y = \sqrt[3]{x-4}$
- (e) $y = \sqrt[3]{x} 4$

- П
- A. a translation 4 units to the right
- B. a translation 4 units down
- C. a reflection across the x-axis
- **D.** a reflection across the y-axis
- E. a vertical stretch by a factor of 4
- 3. Concept Check Match each equation in parts (a)-(h) with the sketch of its graph.
 - (a) $y = x^2 + 2$ **(b)** $y = x^2 - 2$

 - (d) $y = (x 2)^2$

(g) $y = (x-2)^2 + 1$

- (e) $y = 2x^2$
- (c) $y = (x + 2)^2$ **(f)** $y = -x^2$
- **(h)** $y = (x + 2)^2 + 1$

A.

B.

C.

D.

E.

F.

- G.
- H.

- Graph each function. See Examples 1 and 2.
- **4.** $y = 2x^2$

- **5.** y = 3|x| **6.** $y = \frac{1}{3}x^2$ **7.** $y = \frac{2}{3}|x|$

34.
$$y$$
 $7 + y$
 $y = x^2 + 3$
 $y = y = x^2 + 3$

38.

8.
$$y = -\frac{1}{2}x^2$$

9.
$$y = -3|x|$$

10.
$$y = (-2x)^2$$

8.
$$y = -\frac{1}{2}x^2$$
 9. $y = -3|x|$ **10.** $y = (-2x)^2$ **11.** $y = \left| -\frac{1}{2}x \right|$

Concept Check Suppose the point (8,12) is on the graph of y = f(x). Find a point on the graph of each function.

12. (a)
$$y = f(x + 4)$$

(a)
$$y = f(x + 4)$$

(b) $y = f(x) + 4$

13. (a)
$$y = \frac{1}{4}f(x)$$

(b)
$$y = 4f(x)$$

14. (a) the reflection of the graph of
$$y = f(x)$$
 across the x-axis

(b) the reflection of the graph of
$$y = f(x)$$
 across the y-axis

Concept Check Plot each point, and then plot the points that are symmetric to the given point with respect to the (a) x-axis, (b) y-axis, and (c) origin.

18.
$$(-8,0)$$

Without graphing, determine whether each equation has a graph that is symmetric with respect to the x-axis, the y-axis, the origin, or none of these. See Examples 3 and 4.

19.
$$y = x^2 + 2$$

20.
$$y = 2x^4 - 1$$

19.
$$y = x^2 + 2$$
 20. $y = 2x^4 - 1$ **21.** $x^2 + y^2 = 10$ **22.** $y^2 = \frac{-5}{x^2}$

22.
$$y^2 = \frac{-5}{x^2}$$

23.
$$y = -3x^3$$

24.
$$y = x^3 - x$$

23.
$$y = -3x^3$$
 24. $y = x^3 - x$ **25.** $y = x^2 - x + 7$ **26.** $y = x + 12$

Decide whether each function is even, odd, or neither. See Example 5.

27.
$$f(x) = -x^3 + 2x$$

28.
$$f(x) = x^5 - 2x^3$$

29.
$$f(x) = .5x^4 - 2x^2 + 1$$

30.
$$f(x) = .75x^2 + |x| + 1$$

31.
$$f(x) = x^3 - x + 3$$

32.
$$f(x) = x^4 - 5x + 2$$

Graph each function. See Examples 6–8.

33.
$$y = x^2 - 1$$

34.
$$y = x^2 + 3$$

35.
$$y = x^2 + 2$$

36.
$$y = x^2 - 2$$

34.
$$y = x^2 + 3$$

37. $y = (x - 4)^2$

38.
$$y = (x - 2)^2$$

39.
$$y = (x + 2)^2$$

40.
$$y = (x + 3)^2$$

41.
$$y = |x| - 1$$

42.
$$y = |x + 3| + 2$$

43.
$$v = -(x + 1)$$

44.
$$y = (-x + 1)^3$$

45.
$$y = 2x^2 -$$

36.
$$y = (x - 2)$$

39. $y = (x + 2)^2$
40. $y = (x + 3)^2$
41. $y = |x| - 1$
42. $y = |x + 3| + 2$
43. $y = -(x + 1)^3$
44. $y = (-x + 1)^3$
45. $y = 2x^2 - 1$
46. $y = \frac{2}{3}(x - 2)^2$
47. $f(x) = 2(x - 2)^2 - 4$

47.
$$f(x) = 2(x-2)^2 - 4$$

$$\frac{2}{3}(x-2)^2$$
 48. $f(x) = -3(x-2)^2 + 1$

For Exercises 49 and 50, see Example 9.

(a)
$$y = g(-x)$$

(b)
$$y = g(x - 2)$$

$$\mathbf{(c)} \ \ y = -g(x) + 2$$

266 CHAPTER 2 Graphs and Functions

The graph of g(x) is reflected across the y-axis.

The graph of g(x) is translated to the right 2 units.

The graph of g(x) is reflected across the x-axis and translated 2 units up.

The graph of f(x) is reflected across the x-axis.

The graph is the same shape as that of f(x), but stretched vertically by a factor of 2.

The graph of f(x) is reflected across the y-axis.

51. It is the graph of f(x) = |x|translated 1 unit to the left. reflected across the x-axis, and translated 3 units up. The equation is y = -|x+1| + 3.

50. Given the graph of y = f(x) in the figure, sketch the graph of each function, and explain how it is obtained from the graph of y = f(x).

(b)
$$y = 2f(x)$$

(c)
$$y = f(-x)$$

Concept Check Each of the following graphs is obtained from the graph of f(x) = |x|or $g(x) = \sqrt{x}$ by applying several of the transformations discussed in this section. Describe the transformations and give the equation for the graph.

52.

53.

54.

Concept Check Suppose f(3) = 6. For the given assumptions in Exercises 55-60, find another function value.

- **55.** The graph of y = f(x) is symmetric with respect to the origin.
- **56.** The graph of y = f(x) is symmetric with respect to the y-axis.
- **57.** The graph of y = f(x) is symmetric with respect to the line x = 6.
- **58.** For all x, f(-x) = f(x).
- **59.** For all x, f(-x) = -f(x).
- **60.** f is an odd function.
- $\mathbf{6}$ Find the function g whose graph can be obtained by translating the graph of f(x) = 2x + 5 up 2 units and to the left 3 units.
- 62. Find the function g whose graph can be obtained by translating the graph of f(x) = 3 - x down 2 units and to the right 3 units.
- **63.** Complete the left half of the graph of y = f(x) in the figure for each condition.

$$(a) f(-x) = f(x)$$

(a)
$$f(-x) = f(x)$$
 (b) $f(-x) = -f(x)$

graph of $g(x) = \sqrt{x}$ units to the left, ross the x-axis, and units up. The equation x + 4 + 2. graph of $g(x) = \sqrt{x}$

units to the left, rtically by a factor nslated 4 units down.

 $n is y = 2\sqrt{x+4}$ the graph of ranslated 2 units to the ten vertically by a and translated 1 unit

quation is
$$2 \mid -1$$
.

$$= -6$$

= 6 **57.** $f(9) = 6$
= 6

64. Complete the right half of the graph of y = f(x) in the figure for each condition.

(b)
$$f$$
 is even.

65. Suppose the equation y = F(x) is changed to $y = c \cdot F(x)$, for some constant c. What is the effect on the graph of y = F(x)? Discuss the effect depending on whether c > 0 or c < 0, and |c| > 1 or |c| < 1.

Relating Concepts

For individual or collaborative investigation (Exercises 67–73)

In Section 2.3 we introduced linear functions of the form g(x) = ax + b. Consider the graph of the simplest linear function defined by g(x) = x, shown here. Work Exercises 67-73 in order.

67. How does the graph of $F(x) = x^2 + 6$ compare to the graph of $f(x) = x^2$ if a vertical translation is considered?

68. Graph the linear function defined by G(x) = x + 6.

69. How does the graph of G(x) = x + 6 compare to the graph of g(x) = x if a vertical translation is considered? (*Hint:* Look at the y-intercept.)

70. How does the graph of $F(x) = (x - 6)^2$ compare to the graph of $f(x) = x^2$ if a horizontal translation is considered?

71. Graph the linear function defined by G(x) = x - 6.

72. How does the graph of G(x) = x - 6 compare to the graph of g(x) = x if a horizontal translation is considered? (*Hint:* Look at the *x*-intercept.)

73. Consider the two functions in the figure.

(a) Find a value of c for which g(x) = f(x) + c.

(b) Find a value of c for which g(x) = f(x + c).

69. It is translated 6 units up. 70. It is translated 6 units to the right. 71.

72. It is translated 6 units to the right. 73. (a) 2 (b) 4

