1. Let $A=\left(a_{i j}\right)$ be a complex $n \times n$ matrix. Assume that $\langle A x, x\rangle=0$ for all $x \in \mathbb{C}^{n}$. Prove that
(a) $a_{i i}=0$ for $1 \leq i \leq n$ by substituting $x=e_{i}$
(b) $a_{i j}=0$ for $i \neq j$ by substituting $x=p e_{i}+q e_{j}$ then using (a) and putting $p, q= \pm 1, \pm i$ (here $i=\sqrt{-1}$) in various combinations
Conclude that $A=0$.
2. Find a real $n \times n$ matrix $A \neq 0$ such that $\langle A x, x\rangle=0$ for all $x \in \mathbb{R}^{n}$.
3. Find a real $n \times n$ matrix A such that $\langle A x, x\rangle>0$ for all $x \neq 0$, but A is not symmetric. Hence, the symmetry requirement in Definition 12.9 cannot be dropped in the real case.
4. (JPE, May 1994) Let $A \in \mathbb{R}^{n \times n}$ be given, symmetric and positive definite. Define $A_{0}=A$, and consider the sequence of matrices defined by

$$
A_{k}=G_{k} G_{k}^{t} \quad \text { and } \quad A_{k+1}=G_{k}^{t} G_{k}
$$

where $A_{k}=G_{k} G_{k}^{t}$ is the Cholesky factorization for A_{k}. Prove that the A_{k} all have the same eigenvalues.
5. Let $A \in \mathbb{C}^{n \times n}$ and J a Jordan canonical form of A. Show that A has a square root (in the complex sense!) if and only if so does J. Show that if J is diagonal, then both J and A have square roots.
[Extra credit] Let $J=\left(\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right)$ be a nondiagonal Jordan block. Show that J has a square root if and only if $\lambda \neq 0$.

