Let H be a subgroup of 
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(the permutation group), where p is prime. Show that if H contains a transposition and a cycle of length p, then 
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The following Lemma is a special case and may be helpful for generalizing.

Lemma: Any subgroup of 
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 that contains both a transposition and a cycle of length 5 must be equal to 
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 itself.

Proof:

By renaming the elements of 
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 we may assume that the given transposition is 
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1,2

. We can then replace the cycle of length 5 with one of its powers to obtain 
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1,2,,,

abc

, and then we can again rename the elements so that we may assume without loss of generality that we are given 
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1,2

 and 
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1,2,3,4,5

. 

We have 
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)

1,21,2,3,4,52,3,4,5,

=

and conjugating 
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1,2

 by the powers of 
[image: image12.wmf](

)

2,3,4,5

 gives 
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1,3,1,4,and 1,5.

 Then it follows from the formula 
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1,1,1,,

nmnmn

=

 that any subgroup of 
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 that contains the two given elements must contain every transposition.
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