1.  For vectors v and w in 
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, show that v – w and v + w are perpendicular if and only if 
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2. Let u = (-3, 1, 2), v = (4, 0, -8), and w = (6, -1, -4) be vectors in 
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.  Find the components of the vector x that satisfies 2u – v + x = 7x + w.

3. Find a non-zero u vector such that satisfies the following.

a. u has the same direction as v = (4, -2, -1) and has initial point P(-1, 3, -5).

b. u has the opposite direction of v = (4, -2, -1) and has initial point P(-1, 3, -5).

c. u is perpendicular to v = (4, -2, -1), and has a magnitude of  2.

d. Let u = (2, 1, 1) and v = (4, -2, -1).  Find a vector w which is perpendicular to both u and v.  Be sure to prove you have found such a vector.

4. Define a function on vectors from 
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 which describes the distance between two vectors as,
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Show that this distance function has the following 4 properties.
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 (Hint: us part d of theorem 4.1.4)

5. true or false.  For those which are true, give a reason, and for those which are false, give a counterexample.

	a. The cross-product u x v is perpendicular to both u and v.

	b. The determinant of a 2x2 matrix is a vector.

	c. The determinant of a 3x3 matrix is zero if two rows of the matrix are parallel vectors in 
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.

	d. In order for the determinant of a 3x3 matrix to be zero, it must be true that two rows of the matrix are parallel vectors in 
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.

	e. The area of a parallelogram in 
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 determined by non-zero vectors u and v is given by the formula 
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 where A is the matrix whose rows are u and v.  ie 
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	f. The area of a parallelogram in 
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determined by non-zero vectors u and v is given by the formula 
[image: image17.wmf]q

sin

v

u

×

, where 
[image: image18.wmf]p

q

£

£

0

.

	g. If the angle between vectors u and v is 
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	h. For any vector u in 
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, we have 
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	i. 
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 for all vectors in 
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	j. 
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 for all orthogonal vectors in 
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