3. (Rootfinding and Optimization)

- (a) Suppose that f is differentiable on [a, b]. Discuss how you might use a rootfinding method to identify a local extremum of f inside [a, b].
- (b) Let f(x) = log x cos x. Prove that f has a unique maximum in the interval [3, 4]. (NB: log means natural logarithm.)
- (c) Approximate this local maximum using six iterations of the enclosure methods (Bisection and False Position) with starting interval [3, 4].
- (d) Approximate this local maximum using six iterations of the two fixed-point methods (Secant and Newton). For Newton's Method, use p₀ = 3. For the Secant Method, use p₀ = 4 and p₁ = 3.
- (e) What is your best estimate for p, the location of the maximum?
- (f) Provide the following two tables, comparing the four algorithms. The headings for the two tables should be the following.

	Approximation p_n			
Iteration n	Bisection	${\it False Posn}$	Secant	${\bf Newton}$
	Absolute Error $ p_n - p $			
Iteration n	Bisection	${\bf False\ Posn}$	Secant	${\bf Newton}$

- (g) Plot the absolute error for all four methods on the same graph.
- (h) What happens if you attempt to approximate the maximum by starting Newton's Method with p₀ = 5?