- 10. Let A be a set; let $\{X_{\alpha}\}_{{\alpha}\in J}$ be an indexed family of spaces; and let $\{f_{\alpha}\}_{{\alpha}\in J}$ be an indexed family of functions $f_{\alpha}:A\to X_{\alpha}$.
 - (a) Show there is a unique coarsest topology \mathcal{T} on A relative to which each of the functions f_{α} is continuous.
 - (b) Let

$$S_{\beta} = \{ f_{\beta}^{-1}(U_{\beta}) \mid U_{\beta} \text{ is open in } X_{\beta} \},$$

and let $S = \bigcup S_{\beta}$. Show that S is a subbasis for \mathcal{T} .

- (c) Show that a map $g: Y \to A$ is continuous relative to \mathcal{T} if and only if each map $f_{\alpha} \circ g$ is continuous.
- (d) Let $f: A \to \prod X_{\alpha}$ be defined by the equation

$$f(a) = (f_{\alpha}(a))_{\alpha \in J};$$

let Z denote the subspace f(A) of the product space $\prod X_{\alpha}$. Show that the image under f of each element of \mathcal{T} is an open set of Z.

(from The Product Topology)