10. Let $A$ be a set; let $\left\{X_{\alpha}\right\}_{\alpha \in J}$ be an indexed family of spaces; and let $\left\{f_{\alpha}\right\}_{\alpha \in J}$ be an indexed family of functions $f_{\alpha}: A \rightarrow X_{\alpha}$.
(a) Show there is a unique coarsest topology $\mathcal{T}$ on $A$ relative to which each of the functions $f_{\alpha}$ is continuous.
(b) Let

$$
S_{\beta}=\left\{f_{\beta}^{-1}\left(U_{\beta}\right) \mid U_{\beta} \text { is open in } X_{\beta}\right\}
$$

and let $\delta=\bigcup S_{\beta}$. Show that $\delta$ is a subbasis for $\mathcal{T}$.
(c) Show that a map $g: Y \rightarrow A$ is continuous relative to $\mathcal{T}$ if and only if each map $f_{\alpha} \circ g$ is continuous.
(d) Let $f: A \rightarrow \prod X_{\alpha}$ be defined by the equation

$$
f(a)=\left(f_{\alpha}(a)\right)_{\alpha \in J}
$$

let $Z$ denote the subspace $f(A)$ of the product space $\prod X_{\alpha}$. Show that the image under $f$ of each element of $\mathcal{T}$ is an open set of $Z$.
(from The Product Topology)

