Using the following project information

Activity	Optimistic Time Estimate (weeks)	Most Likely Time Estimates (weeks)	Pessimistic Time Estimates (weeks)	Immediate Predecessor (s)	Variance	Expected Time (weeks)
A	3	6	9	none	1.000	6.00
B	3	5	7	A	0.444	5.00
C	4	7	12	A	1.778	7.33
D	4	8	10	B	1.000	7.67
E	5	10	16	C	3.361	10.17
F	3	4	5	D, E	0.111	4.00
G	3	6	8	D, E	0.694	5.83
H	5	6	10	F	0.694	6.33
I	5	8	11	G	1.000	8.00
J	3	3	3	H,I	0.000	3.00

The critical path is A-C-E-G-I-J.
(a) Calculate the probability that the project will be completed in 38 weeks.
$\mathrm{P}($ project $\leq 38)=$ \square
(b) Calculate the probability that the project will be completed in 42 weeks.
$P($ project $\leq 42)=$ \square
(Round your answers to 3 decimal places, the tolerance is $+/-0.005$.)

