4. In each case, solve $\nabla^{2} \psi=0$ for $\psi(x, y)$ for the specified region D and the specified boundary conditions, together with the condition that ψ be bounded on D. If useful, you may use the known solution of the Dirichlet problem for the half plane [(12) in Section 20.4], as we did in Example 2.
(a) Let D be the strip $0<y<\pi,-\infty<x<\infty$. Let $\psi=0$ everywhere on the boundary except on $y=0(-\infty<x<0)$, where $\psi=20$. Also, evaluate $\psi(0, \pi / 2)$. HINT: Use entry 6 in Appendix F.
(b) The same as part (a) but with $0<y<5$ instead of $0<y<\pi$. HINT: Modify the mapping given in entry 6 slightly, so that D^{\prime} is once again the upper half plane.
(c) Let D be the region $0<x<\infty, 0<y<\infty$. Let $\psi=0$ everywhere on the boundary except on $x=0(2<y<\infty)$, where $\psi=35$. Also, evaluate $\psi(2,2)$. HINT: Use entry 5 in Appendix F.
(d) The same as part (c), but with different boundary conditions. This time, let $\psi=0$ everywhere on the boundary except on $x=0(0<y<2)$, where $\psi=35$.
(e) Let D be the 45° wedge between the positive x axis and the line $y=x$. Let $\psi=0$ everywhere on the boundary except on the x axis from $x=5$ to $x=\infty$, where $\psi=200$. Also evaluate $\psi(5,1)$. HINT: Use entry 5 in Appendix F.
(f) The same as part (e) but with different boundary conditions. This time let $\psi=10$ everywhere on the boundary except on the x axis from $x=0$ to $x=10$, where $\psi=0$.
(g) Let D be the semi-infinite strip $0<x<1,0<y<\infty$. Let $\psi=0$ on $x=0$ and on $y=0$, and let $\psi=400$ on $x=1$. Also, evaluate $\psi(0.5,0.1)$. HINT: Use entry 10 in Appendix F.
(h) Let D be the semi-infinite strip $0<x<4,0<y<\infty$. Let $\psi=0$ on $y=0$, and let $\psi=200$ on $x=0$ and $x=4$. Also, evaluate $\psi(2,2), \psi(2,4), \psi(2,6), \psi(2,8), \psi(2,10)$, and $\psi(2,20)$. HINT: You can use entry 10 in Appendix F, but will need to modify it slightly.
(i) Let D be the semi-infinite strip $-2<x<2,0<y<\infty$. Let $\psi=0$ on $x=-2$, and on $y=0(-2<x<0)$, and let $\psi=50$ on $x=2$ and $y=0(0<x<2)$. Also, evaluate $\psi(0,1)$ and $\psi(0,30)$. HINT: With a slight modification you can use entry 12 in Appendix F.
$V_{\text {(j) }}$ Let D be the region in the right half plane, between the lines $\bar{y}= \pm x$ and the curve $x^{2}-y^{2}=4$. Let $\psi=30$ on $y= \pm x$ and let $\psi=20$ on $x^{2}-y^{2}=4$. Also, evaluate $\psi(1,0)$ and $\psi(0.6,-0.4)$. HINT: Use the mapping $w(z)=z^{2}$.
(The problems are from Conformal Mapping. Please solve for only part i.)
(12) in Section 20.4:

Thus,

$$
\hat{u}(\omega, y)=\hat{f}(\omega) e^{-|\omega| y}
$$

If we use entry 1 in Appendix D, along with the Fourier convolution property (entry 21), we obtain the final result

$$
\begin{equation*}
u(x, y)=f(x) * \frac{y}{\pi} \frac{1}{x^{2}+y^{2}} \tag{11}
\end{equation*}
$$

or

$$
\begin{align*}
u(x, y) & =\frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(\xi)}{(x-\xi)^{2}+y^{2}} d \xi \tag{12}\\
& \equiv \int_{-\infty}^{\infty} P(\xi-x, y) f(\xi) d \xi
\end{align*}
$$

The Entry 12:
12. $w=\sin z$

