Consider the heat equation
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Show that if 
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Show that 
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is independent of 
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. Further, show that if 
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where C is an arbitrary constant. From this last ordinary differential equation, and assuming 
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, deduce that
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is a solution of the heat equation (here A is an arbitrary constant).

Show that as 
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tends to zero from above,
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and that for all 
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where B is a (finite) constant.

Given that
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, find B. What physical and/or probabilistic interpretation might one give to 
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