Show that the following algorithm is valid for generating $X \sim \operatorname{geom}(p)$:

1. Let $i=0$.
2. Generate $U \sim \mathrm{U}(0,1)$ independent of any previously generated $\mathrm{U}(0,1)$ random variates.
3. If $U \leq p$, return $\mathrm{X}=i$. Otherwise, replace i by $i+1$ and go back to step 2 .

Note:
$\mathrm{U}(0,1)$ represents the uniform distribution where $0 \leq u \leq 1$.
Geom(p) represents the geometric distribution.
$f(x)=p(1-p)^{x}, x=0,1,2 \ldots$ is the pdf of the geometric distribution with mean $(1-p) / p$.

Please show all work, thanks.

