3. (15 points) Suppose that a decision maker faced with four decision alternatives and four states of nature develops the following payoff table:

DecisionAlternative	State of Nature			
	S ₁ .	S ₂	S ₃	S ₄
D ₁	909	1117	952	307
D ₂	252	457	505	1088
D ₃	1108	643	1075	841
D_4	1.120	558	629	1178

- a) What alternative would you recommend to an optimistic decision-maker? What is the expected payoff of this decision?
- b) What alternative would you recommend to a pessimistic decision-maker? What is the expected payoff of this decision?
- c) What alternative would you recommend using the equal-likelihood criterion? What is the expected payoff of this decision?
- d) What alternative would you recommend using the minimax regret criterion? What is the expected payoff of this decision?