$X_1,...,X_n$ are independent observations from a normal distribution with mean μ and variance σ^2 . It can be shown that the sample variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2},$$

where $\overline{X} = n^{-1} \sum_{i=1}^{n} X_i$, is distributed as $\Gamma(\alpha, \lambda)$ with $\alpha = (n-1)/2$ and $\lambda = (n-1)/2\sigma^2$.

- a) Using the results for the gamma distribution, show that s^2 is an unbiased estimator of σ^2 . Also state its variance.
- b) Consider a statistic of the form $T_k = ks^2$, for some constant k. Find expressions for the bias and variance of T_k as an estimator of σ^2 . Hence, or otherwise, find the value of k that minimises the mean squared error of T_k as an estimator of σ^2 .