9. The temperature distribution $u(x, t)$ in a 2-m long brass rod is governed by the problem

$$
\begin{aligned}
& \alpha^{2} u_{x x}=u_{t}, \quad(0<x<2,0<t<\infty) \\
& u(0, t)=u(2, t)=0, \\
& u(x, 0)= \begin{cases}50 x, & (t>0) \\
100-5 x, & (1<x<2)\end{cases}
\end{aligned}
$$

where $\alpha^{2}=2.9 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{sec}$.
(a) Determine the solution for $u(x, t)$.
(b) Compute the temperature at the midpoint of the rod at the end of 1 hour.
(c) Compute the time it will take for the temperature at that point to diminish to $5^{\circ} \mathrm{C}$.
(d) Compute the time it will take for the temperature at that point to diminish to $1^{\circ} \mathrm{C}$.
(The problem is from Separation of Variables in Diffusion Equation.)

