(1) Let

$$
A=\left[\begin{array}{rrrr}
2 & -1 & 0 & 1 \\
0 & 3 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & -1 & 0 & 3
\end{array}\right]
$$

Find a Jordan canonical form of A and a Jordan canonical basis for the linear transformation L_{A} associated to A
(2) Let

$$
A=\left[\begin{array}{rrrr}
2 & -4 & 2 & 2 \\
-2 & 0 & 1 & 3 \\
-2 & -2 & 3 & 3 \\
-2 & -6 & 3 & 7
\end{array}\right]
$$

Find the Jordan canonical form J for A and a matrix P such that $J=P^{-1} A P$.
(3) Let $V=P_{2}(\mathbb{R}) \subset \mathbb{R}[x, y]$ denote the vector space of polynomial functions with coefficients in \mathbb{R} in two variables of degree at most 2 . A basis for V is $\alpha=\left\{1, x, y, x^{2}, y^{2}, x y\right\}$. Consider the linear mapping $T: V \rightarrow V$ defined by

$$
T(f)=\frac{\partial}{\partial x} f
$$

Find a Jordan canonical basis for T.

