

Where is the Electron?

> Electron probability density:

$$
|\psi|^{2}=|R Y|^{2}
$$

$>$ Probability of finding the electron in a small region of the atom volume:

$$
r^{2} d r d \Omega=r^{2} d r d(\cos \theta) d \varphi \quad \Omega=\text { solid angle }
$$

is:

$$
\begin{aligned}
& \left|R_{n e}(r) Y_{l m}(\theta, \varphi)\right|^{2} r^{2} d r d \Omega \\
& \quad=\left|r R_{n e}(r)\right|^{2}\left|Y_{l m}(\theta, \varphi)\right|^{2} d r d \Omega \\
& \quad=\left|\chi_{n e}(r)\right|^{2}\left|Y_{l m}(\theta, \varphi)\right|^{2} d r d \Omega
\end{aligned}
$$

> Ask a mathematician!

Radial Dependence			
> Radius of first Bohr orbit:			
$\mathrm{a}_{0}=4 \pi \varepsilon_{0} \hbar^{2} / \mathrm{me} \mathrm{e}^{2}=0.0529 \mathrm{~nm}$			
$R_{10}=2\left\{1 / a_{0}\right\}^{3 / 2} \exp \left\{-r / a_{0}\right\}$			
$\begin{aligned} R_{20} & =[1 / 2 J\{2\}]\left\{1 / a_{0}\right\}^{3 / 2}\left\{2-r / a_{0}\right\} \text { exp }\left\{-r / a_{0}\right\}\end{aligned}$			
$P(r)=\left\|\chi_{n e}\right\|^{2}=\left\|r R_{n e}\right\|^{2}$			
> Asr $\Rightarrow 0$:			
$\chi_{n e}=r R_{n e} \Rightarrow 0$			
	$\mathrm{R}_{\mathrm{n}=0} \neq 0$	s wave densit	
	$\mathrm{R}_{n \pm 0}=0$	p, d.... wave d	
07/09/2011	PHYS255: Quantum	Physics E.E.S. Paul	205

Radial Distributions: $n=2$

207

Angular Dependence

$>$ Spherical harmonics $\mathrm{Y}_{\ell m}$:
$y_{00}=\sqrt{ }\{1 / 4 \pi\}$
$|\psi|^{2}$ isotropic
$y_{11}=-J\{3 / 8 \pi\} \sin \{\theta\} \exp \{i \varphi\}$
$|\psi|^{2} \propto \sin ^{2}\{\theta\}$
$y_{10}=\int\{3 / 4 \pi\} \cos \{\theta\}$
$|\psi|^{2} \propto \cos ^{2}\{\theta\}$
$y_{1-1}=\int\{3 / 8 \pi\} \sin \{\theta\} \exp \{-i \varphi\}$
$y_{22}=J\{15 / 32 \pi\} \sin ^{2}\{\theta\} \exp \{2 i \varphi\}$
$|\psi|^{2} \propto \sin ^{2}\{\theta\}$
$|\psi|^{2} \propto \sin ^{4}\{\theta\}$
$|\psi|^{2} \propto \sin ^{2}\{\theta\} \cos ^{2}\{\theta\}$
$|\psi|^{2} \propto\left(3 \cos ^{2}\{\theta\}-1\right)^{2}$

Summary: Hydrogen Atom

> Electron moving under influence of central potential:

$$
V(r)=\left\{-e^{2} / 4 \pi \varepsilon_{0} r\right\}
$$

> Energy quantisation:

$$
E_{n}=\left\{-m e^{4} / 8 \varepsilon_{0}^{2} h^{2}\right\}\left\{1 / n^{2}\right\}=-R h c / n^{2}=-13.6 \mathrm{eV} / n^{2}
$$

\rightarrow Accidental degeneracy on l :

$$
l=0,1,2 \ldots n-1
$$

$>$ Degeneracy on m :

$$
m=-l,-l+1, \ldots 0, \ldots l-1, l
$$

$>$ Photon emitted/absorbed for $\Delta l= \pm 1$ selection rule
> Electron wave function:

$$
\psi_{n e m}=R_{n e}(r) Y_{\ell m}(\theta, \varphi)
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul
\square

9. Wave Dynamics of Particles: Scattering

> 9.1 Potential Step
> 9.2 Potential Barrier
> 9.3 Attractive Potential Well

Scattering

\rightarrow A particle moves under the influence of $V(x)$ (1D) but is not confined
> It is unbound:

$$
|x| \Rightarrow \infty,|\psi|^{2} \neq 0
$$

$>$ It has a finite (but not infinite) probability density $|\Psi|^{2}$ when far from scattering centre $(\mathrm{V}(x))$
$>$ It is (almost) a free particle far from region of $V(x)$
> Free particle:

$$
\psi=A \exp \{i k x\} \text { or } B \exp \{-i k x\} \quad \text { (or a combination) }
$$

> Non-localised:

$$
k>0 \text { and } J\{2 m E\} / \hbar \text { real } \Rightarrow E>0 \text { positive energy }
$$

> Also remember:
ψ and $\mathrm{d} \psi / \mathrm{d} \times$ are continuous
07/09/2011
PHYs255: Quantum \& Atomic Physics - E.S. Paul

Scattering: What is Measured?

> Incident particle:
>Probability that it is scattered with a given energy, momentum
$>$ Incident particle flux:
$>$ Flux that it is scattered with a given energy, momentum
\Rightarrow Flux is defined as the number of particles per unit time across unit perpendicular area

What is this in quantum physics ?

Continuity of Flow

Quantum Flux Conservation

$>$ Using the free particle solution:

$$
\psi=A \exp \{i k x\}+B \exp \{-i k x\}
$$

> It is found that:

$$
\psi^{*} d \psi / d x-\psi d \psi^{*} / d x=2 i k\left[|A|^{2}-|B|^{2}\right]
$$

$>$ Or:
$-i\left[\psi^{*} d \psi / d x-\psi d \psi^{*} / d x\right]=2 k\left[|A|^{2}-|B|^{2}\right] \quad$ real
$>$ Multiply by $\hbar / 2 m$ and remember $p=\hbar k$:

$$
-\{i \hbar / 2 m\}\left[\psi^{*} d \psi / d x-\psi d \psi^{*} / d x\right]=\{p / m\}\left[|A|^{2}-|B|^{2}\right]
$$

dimension of velocity \times prob density
> Conservation of probability current density
> Quantum equivalent of flux !
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Scattering: Flux

\rightarrow Start with time independent Schrödinger equation:
$-\left\{\hbar^{2} / 2 m\right\} d^{2} \psi / d x^{2}+V(x) \psi=E \psi$
\rightarrow Multiply by Ψ^{*} :
$-\left\{\hbar^{2} / 2 m\right\} \Psi^{\star} d^{2} \psi / d x^{2}+\psi^{\star} V(x) \psi=\psi^{\star} E \psi$
$>$ Write down complex conjugate:
$-\left\{\hbar^{2} / 2 m\right\} \psi d^{2} \psi^{*} / d x^{2}+\psi V(x) \psi^{*}=\psi E \psi^{*}$
\rightarrow Subtract:
$\psi^{*} d^{2} \psi / d x^{2}-\psi d^{2} \psi^{*} / d x^{2}=0$
$>$ This is equivalent to:
$d / d x\left[\psi^{*} d \psi / d x-\psi d \psi^{*} / d x\right]=0$
> Implying:
the quantity $\psi^{*} d \psi / d x-\psi d \psi^{*} / d x$ is conserved
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Quantum Scattering

$>$ Using the free particle solution:

$$
\Psi=A \exp \{i k x\}+B \exp \{-i k x\}
$$

>Probability current density is conserved
$>$ It has a component (in the $+\mathrm{ve} \times$ direction of):

$$
+p / m|A|^{2}
$$

> It has a component (in the -ve \times direction of):

$$
-p / m|B|^{2}
$$

>Quantum equivalent to classical conservation of flux

9.1 Particle and Potential Step

$$
\begin{aligned}
& >\text { Region 1: } \\
& \quad x<0 \quad V=-V_{0} \\
& >\text { Region } 2:
\end{aligned}
$$

$x>0 \quad V=0$
> Use time independent Schrödinger equation for solutions in regions 1 and 2
$>$ Region 1:
$\Psi_{1}=A_{1} \exp \left\{i \mathrm{k}_{1} x\right\}+\mathrm{B}_{1} \exp \left\{-\mathrm{ik}_{1} \times\right\} \quad \mathrm{k}_{1}=\int\left\{2 m\left(E+V_{0}\right)\right\} / \hbar$
\rightarrow Region 2 :

$$
\Psi_{2}=A_{2} \exp \left\{i k_{2} x\right\}+B_{2} \exp \left\{-i k_{2} x\right\} \quad k_{2}=\sqrt{ }\{2 m E\} / \hbar
$$

\rightarrow Everywhere k_{1} and k_{2} are real and $E>0$
07/09/2011 PHYS255: Quantum \& Atomic Physics - E.S. Paul

Potential Step

> Apply continuity of ψ and $\mathrm{d} \psi / \mathrm{d} x$ at $x=0$:

$$
\begin{array}{ll}
A_{1}+B_{1}=A_{2}+B_{2} & \text { two equations, } \\
k_{1}\left\{A_{1}-B_{1}\right\}=k_{2}\left\{A_{2}-B_{2}\right\} & \text { four unknowns }
\end{array}
$$

> Apply boundary conditions:
>Far from scattering centre $(x=0)$ we have particle which was incident from left (\Rightarrow) now leaving (scattering) to right (\Rightarrow)
\rightarrow Flux to right after scattering is only \Rightarrow, hence:

$$
\Psi_{2}=A_{2} \exp \left\{i k_{2} x\right\} \text { i.e. } B_{2}=0
$$

> Now we have:
$A_{1}+B_{1}=A_{2}$
two equations,
$\left\{k_{1} / k_{2}\right\}\left\{A_{1}-B_{1}\right\}=A_{2}$
three unknowns

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Continuity of Waveforms

> Waveforms in Quantum Mechanics must be "continuous"

Potential Step

$>$ Solving, we can determine the relative normalisation of each plane wave in Ψ_{1} and Ψ_{2} :

$$
\begin{aligned}
& B_{1}=A_{1}\left\{k_{1}-k_{2}\right\} /\left\{k_{1}+k_{2}\right\} \\
& A_{2}=A_{1} 2 k_{1} /\left\{k_{1}+k_{2}\right\}
\end{aligned}
$$

\rightarrow Hence in region $1:$

$$
\begin{aligned}
\Psi= & A_{1} \exp \left\{i k_{1} \times\right\}+\left[A_{1}\left\{k_{1}-k_{2}\right\} /\left\{k_{1}+k_{2}\right\}\right] \exp \left\{-i k_{1} \times\right\} \\
& \text { incident }(\Rightarrow) \quad \text { reflected or scattered }(\Leftarrow)
\end{aligned}
$$

$>$ In region 2 :

$$
\psi=\left[A_{1} 2 k_{1} /\left\{k_{1}+k_{2}\right\}\right] \exp \left\{i k_{2} x\right\}
$$

$$
\text { transmitted or unscattered }(\Rightarrow)
$$

Potential Step

\rightarrow Recall: Flux $=\{\hbar k / m\}|A|^{2}$
\rightarrow Incident flux, region 1 :

$$
\left\{\hbar k_{1} / m\right\}\left|A_{1}\right|^{2}
$$

$>$ Reflected flux, region 1 :

$$
\left\{\hbar k_{1} / m\right\}\left|A_{1}\right|^{2}\left[\left\{k_{1}-k_{2}\right\} /\left\{k_{1}+k_{2}\right\}\right]^{2}
$$

$>$ Transmitted flux, region 2 :
$\left\{\hbar k_{2} / m\right\}\left|A_{1}\right|^{2}\left[2 k_{1} /\left\{k_{1}+k_{2}\right\}\right]^{2}$
$>$ It can be shown that the incident flux is equal to the sum of the reflected (scattered) and transmitted (unscattered) fluxes

Probability current density is conserved!
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Limit of Classical Physics

\rightarrow No quantisation, i.e. $\hbar \Rightarrow 0$

$$
\begin{array}{ll}
k_{1}=\sqrt{ }\left\{2 m\left(E+V_{0}\right)\right\} / \hbar \Rightarrow \infty & \text { de Broglie wavelength } \\
\left.k_{2}=\sqrt{2} 2 m E\right\} / \hbar \Rightarrow \infty & \text { gets small }(\rightarrow 0)
\end{array}
$$

$>$ Then:

$$
\begin{aligned}
& k_{1}-k_{2} \Rightarrow 0 \quad \text { difference of two large numbers } \\
& k_{1}+k_{2} \Rightarrow \infty
\end{aligned}
$$

$>$ Therefore:
$R \Rightarrow 0, T \Rightarrow 1$
> The particle is in no way or sense "reflected"!
$>$ It moves from the region (1) of kinetic energy $\left(E+V_{0}\right)$ to the region (2) of kinetic energy E

Reflectivity \& Transmissivity

$>$ Reflectivity R (due to scattering):

$$
\begin{aligned}
R & =\{\text { flux } \leftarrow\}_{x \times 0} /\{\text { flux } \Rightarrow\}_{x \times 0} \\
& =\left[\left\{k_{1}-k_{2}\right\} /\left\{k_{1}+k_{2}\right\}\right]^{2} \\
& \left.=\left[\left(\int\{E\}-\sqrt{ }+E+V_{0}\right\}\right) /\left(\int\{E\}+\sqrt{ }\left[E+V_{0}\right\}\right)\right]^{2}
\end{aligned}
$$

\rightarrow Transmissivity T (not scattered):
$T=\{\text { flux } \Rightarrow\}_{x>0} /\{\text { flux } \Rightarrow\}_{x \times 0}$
$=4 \mathrm{k}_{1} \mathrm{k}_{2} /\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)^{2}$

$$
=4 \sqrt{ }\left\{E\left(E+V_{0}\right)\right\} /\left(\int\{E\}+\sqrt{ }\left\{E+V_{0}\right\}\right)^{2}
$$

> Large particle energy $E \geqslant V_{0}$

$$
R \sim 0, T \sim 1 \quad \text { particle unaffected }
$$

$>$ Small particle energy $\mathrm{E} \sim 0$

$$
R \sim 1, T \sim 0 \quad \text { particle confined to } x<0
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Particle with Energy E < 0

\rightarrow Region 1 :

$$
\mathrm{k}_{1}=\sqrt{ }\left\{2 m\left(E+V_{0}\right)\right\} / \hbar
$$

$>$ Region 2 :

$$
\begin{aligned}
\mathrm{k}_{2} & =\sqrt{ }\{2 \mathrm{mE}\} / \hbar \quad \text { imaginary } \\
& =i \alpha_{2}
\end{aligned}
$$

$>$ Region 1:
$\Psi_{1}=A_{1} \exp \left\{i \mathrm{k}_{1} \times\right\}+\mathrm{B}_{1} \exp \left\{-\mathrm{ik}_{1} \times\right\}$
$>$ Region 2 :

$$
\Psi_{2}=A_{2} \exp \left\{-\alpha_{2} x\right\}+B_{2} \exp \left\{\alpha_{2} x\right\} \quad \text { i.e. } B_{2}=0
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Continuity of Waveforms

> Waveforms in Quantum Mechanics must be "continuous"
$>\psi(x)$ must be single valued for all x
$>d \psi / d x$ must be single valued for all x particularly at boundaries

07/09/2011

Potential Step

\rightarrow Apply continuity of ψ and $\mathrm{d} \psi / \mathrm{d} x$ at $x=0$:

$$
\begin{aligned}
& A_{1}+B_{1}=A_{2} \\
& \text { ik }_{1}\left\{A_{1}-B_{1}\right\}=-\alpha_{2} A_{2}
\end{aligned}
$$

$>$ Solve (as before):

$$
\begin{aligned}
& B_{1}=-A_{1}\left\{\alpha_{2}+i k_{1}\right\} /\left\{\alpha_{2}-i k_{1}\right\} \\
& A_{2}=-A_{1} 2 i k_{1} /\left\{\alpha_{2}-i k_{1}\right\}
\end{aligned}
$$

\rightarrow Hence in region $1:$

$$
\Psi_{1}=A_{1} \exp \left\{i k_{1} \times\right\}-\left[A_{1}\left\{\alpha_{2}+i k_{1}\right\} /\left\{\alpha_{2}-i k_{1}\right\}\right] \exp \left\{-i k_{1} \times\right\}
$$

$>$ In region 2 :

$$
\Psi_{2}=\left[-A_{1} 2 i k_{1} /\left\{\alpha_{2}-i k_{1}\right\}\right] \exp \left\{-\alpha_{2} \times\right\}
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Potential Step

$>$ Note that the wave function $\Psi_{2} \neq 0$ in region 2
>Probability density penetrates the barrier (cf finite square well)
> Reflectivity:

$$
R=\left|\left\{\alpha_{2}+i k_{1}\right\} /\left\{\alpha_{2}-i k_{1}\right\}\right|^{2}=1
$$

$>$ Particle is confined to $x<0$

Penetration Depth

> The penetration depth L represents an approximate measure of how far the wave-function of a quantum particle penetrates into the classically forbidden region
$>$ Defined when the probability density falls to 1 /e of its value at $x=0$

$$
\left|\Psi_{2}(x=L)\right|^{2} /\left|\Psi_{2}(x=0)\right|^{2}=\exp \left\{-2 \alpha_{2} L\right\}=\exp \{-1\}
$$

$>$ So
$2 \alpha_{2} L=1 \quad$ Binding energy, energy below top of potential
$>\mathrm{Or}$

$>$ Note for $\hbar \Rightarrow 0$ (i.e. classical physics) $L=0$
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Potential Step: Summary

> A change of the potential energy function $V(x)$ will cause the probability current density (flux) $\{p / m\}|A|^{2}$ of an otherwise free particle to be reflected or scattered
> The probability density of a particle will penetrate into "unphysical" regions where the total energy is less than the potential energy $V(x)$

- Can a particle escape from a region where its
 total energy is less than $\mathrm{V}(\mathrm{x})$?
> Yes!: tunnelling
07/09/2011

9.2 Particle and Potential Barrier

$>$ Potential is of the form:
$|x|>a / 2 \quad V=0$
$|x|<a / 2 \quad V=V_{0}$
$>$ Boundary conditions:
$>$ Particle incident left to right
$>$ Continuity of ψ and $d \psi / d x$

$$
\begin{array}{rlr}
>\text { Region } 1: x<-a / 2 & \\
\quad \Psi_{1}=A_{1} \exp \{i k x\}+B_{1} \exp \{-i k x\} & \mathrm{k}=\sqrt{ }\{2 m E\} / \hbar \\
>\text { Region } 2:-a / 2<x<a / 2 & \\
\Psi_{2}=A_{2} \exp \{-\alpha x\}+B_{2} \exp \{\alpha x\} & \alpha=\sqrt{ }\left\{2 m\left(V_{0}-E\right)\right\} / \hbar \\
>\text { Region } 3: a / 2<x & k=\sqrt{2} 2 m E\} / \hbar
\end{array}
$$

07/09/2011 PHYS255: Quantum \& Atomic Physics - E.S. Paul

Potential Barrier and Wave Packet

> Incident wave packet is partly reflected and partly transmitted

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Potential Barrier

\rightarrow Continuity of ψ at $x=-a / 2$:

$$
A_{1} \exp \{-i k a / 2\}+B_{1} \exp \{i k a / 2\}
$$

$$
=A_{2} \exp \{\alpha a / 2\}+B_{2} \exp \{-\alpha a / 2\}
$$

$>$ Continuity of ψ at $x=a / 2$:
$A_{3} \exp \{i k a / 2\}=A_{2} \exp \{-\alpha a / 2\}+B_{2} \exp \{\alpha a / 2\}$
\rightarrow Continuity of $d \psi / d x$ at $x=-a / 2$:

$$
i \mathrm{k}\left[A_{1} \exp \{-i k a / 2\}-\mathrm{B}_{1} \exp \{i k a / 2\}\right]
$$

$$
=\alpha\left[-A_{2} \exp \{\alpha a / 2\}+B_{2} \exp \{-\alpha a / 2\}\right]
$$

\rightarrow Continuity of $d \psi / d x$ at $x=a / 2$:

$$
i k A_{3} \exp \{-i k a / 2\}=\alpha\left[-A_{2} \exp \{-\alpha a / 2\}+B_{2} \exp \{\alpha a / 2\}\right]
$$

Four equations, five unknowns

Potential Barrier

\Rightarrow Express the four unknowns $B_{1}, A_{2}, B_{2}, A_{3}$ in terms of A_{1} :
$\exp \{i k a / 2\} B_{1}-\exp \{\alpha a / 2\} A_{2}-\exp \{-\alpha a / 2\} B_{2}=-A_{1} \exp \{-i k a / 2\}$ $\exp \{-\alpha a / 2\} A_{2}+\exp \{\alpha a / 2\} B_{2}-\exp \{i k a / 2\} A_{3}=0$
ik $\exp \{i k a / 2\} B_{1}-\alpha \exp \{\alpha a / 2\} A_{2}+\alpha \exp \{-\alpha a / 2\} B_{2}=i k A_{1} \exp \{-i k a / 2\}$ $\alpha \exp \{-\alpha a / 2\} A_{2}-\alpha \exp \{\alpha a / 2\} B_{2}+i k \exp \{i k a / 2\} A_{3}=0$
$>$ Solutions for $B_{1} / A_{1}, A_{2} / A_{1}, B_{2} / A_{1}, A_{3} / A_{1}$ follow after much tedious but straightforward algebra!
> In particular:
$A_{3} / A_{1}=4 i k \alpha \exp \{-i k a\} /\left[(k+i \alpha)^{2} \exp \{\alpha a\}-(k-i \alpha)^{2} \exp \{-\alpha a\}\right]$
$>$ Finite free particle solution in region 3 !

$$
\Psi_{3}=A_{3} \exp \{i k x\} \text { for } x \gg 0!
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Barrier Penetration

\Rightarrow Region 1
Free particle + "backscattering"
\Rightarrow Region 2 :
"Exponential tunnelling"
$>$ Region 3 :
Free particle (same energy)
\rightarrow Classical limit $\hbar=0$: $A_{3}=0$
$>$ Flux in region 1 :

$$
\left|A_{1}\right|^{2}+\left|B_{1}\right|^{2}+2 \operatorname{Re}\left[A_{1}^{*} B_{1} \cos \{2 k a\}\right] \quad \text { interference }
$$

\rightarrow Flux in region 3 :
$\left|A_{3}\right|^{2} \neq 0 \quad$ quantum effect
07/09/2011 PHYS255: Quantum \& Atomic Physics - E.S. Paul

Barrier Penetration

> Transmissivity T :

$$
T=k\left|A_{3}\right|^{2} / k\left|A_{1}\right|^{2}
$$

$$
=16 k^{2} \alpha^{2} \exp \{-2 \alpha a\} /\left|(k+i \alpha)^{2}-(k-i \alpha)^{2} \exp \{-2 \alpha a\}\right|^{2}
$$

> In most solutions:

$$
\alpha a=\sqrt{ }\left\{2 m\left(V_{0}-E\right)\right\} a / \hbar \text { is large }
$$

> Hence:

$$
T \approx 16 k^{2} \alpha^{2} \exp \{-2 \alpha a\} /\left[\left(k^{2}-\alpha^{2}\right)^{2}+4 k^{2} \alpha^{2}\right]
$$

$$
=16 k^{2} \alpha^{2} \exp \{-2 \alpha a\} /\left(k^{2}+\alpha^{2}\right)^{2}
$$

$>$ Or:
$T=\left\{16 E\left(V_{0}-E\right) / V_{0}\right\} \exp \left\{-2 a \int\left\{2 m\left(V_{0}-E\right)\right\} / \hbar\right\}$
\rightarrow Dominant dependence on E is exponential

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Alpha Decay of Atomic Nuclei

$>$ Decay rate $\lambda \propto T$ varies over many orders of magnitude
> Energy of alpha particle varies over a few orders of magnitude
$>$ Quantum tunnelling through Coulomb barrier

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Scanning Tunnelling Microscope

- Current of electrons due to tunnelling through surface probe barrier
> Current $\propto T \propto \exp \{-\alpha a\}$
> Current very sensitive to a
Measurement of atomic structure near surface

Summary: Barrier Penetration

Classical Picture

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Summary: Barrier Penetration

Incident + Reflection Interference

Quantum Picture

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

9.3 Particle \& Attractive Potential Well

$>$ Region $1: x<-a / 2$

$$
\Psi_{1}=A_{1} \exp \{i k x\}+B_{1} \exp \{-i k x\} \quad k=\int\{2 m E\} / \hbar
$$

\rightarrow Region $2:-a / 2<x<a / 2$
$\Psi_{2}=A_{2} \exp \left\{\mathrm{ik}_{0} x\right\}+\mathrm{B}_{2} \exp \left\{-\mathrm{ik} \mathrm{k}_{0} x\right\} \quad \mathrm{k}_{0}=\sqrt{ }\left\{2 \mathrm{~m}\left(E+\mathrm{V}_{0}\right\} / \hbar\right.$
$>$ Region $3: a / 2<x$

$$
\Psi_{3}=A_{3} \exp \{i k x\} \quad \mathrm{k}=\sqrt{ }\{2 \mathrm{mE}\} / \hbar
$$

07/09/2011 PHYS255: Quantum \& Atomic Physics - E.S. Paul

Attractive Potential Well

> After some tiresome algebra:
$A_{3} / A_{1}=-4 k k_{0} \exp \{-i k a\} /\left[\left(k-k_{0}\right)^{2} \exp \left\{k_{0} a\right\}-\left(k+k_{0}\right)^{2} \exp \left\{-i k_{0} a\right\}\right]$ which can also be written:
$A_{3} / A_{1}=-4 k k_{0} \exp \{-i k a\} /\left[2\left(k^{2}-k_{0}^{2}\right)^{2} i \sin \left\{k_{0} a\right\}-4 k k_{0} \cos \left\{k_{0} a\right\}\right]$
> Transmissivity T :
$T=k\left|A_{3}\right|^{2} / k\left|A_{1}\right|^{2}$
$=4 k^{2} k_{0}{ }^{2} /\left[4 k^{2} k_{0}{ }^{2} \cos ^{2}\left\{k_{0} a\right\}+\left(k^{2}+k_{0}{ }^{2}\right)^{2} \sin ^{2}\left\{k_{0} a\right\}\right]$
$=1 /\left[1+X \sin ^{2}\left\{k_{0} a\right\}\right] \quad X=\left(k^{2}-k_{0}{ }^{2}\right)^{2} / 4 k^{2} k_{0}{ }^{2}$
> Maximum T when:
$\sin \left\{k_{0} a\right\}=0$

$$
\begin{aligned}
& \therefore k_{0} a=2 \pi a / \lambda_{0}=n \pi \\
& n \lambda_{0} / 2=a
\end{aligned} \quad n \text { integer }
$$

> Maximum when integer number of half wavelengths equals the width of the well

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Attractive Potential Well

> Maximum T occurs when:

$$
\left[J\left\{2 m\left(E+V_{0}\right\} / \hbar\right] a=n \pi\right.
$$

where E is resonance energy
> Minimum T occurs when

$$
\sin \left\{k_{0} a\right\}= \pm 1 \text { or } k_{0} a=\left(n+\frac{1}{2}\right) \pi \quad n \text { integer }
$$

corresponding to:

$$
\left[\sqrt{ }\left\{2 m\left(E+V_{0}\right\} / \hbar\right] a=\left(n+\frac{1}{2}\right) \pi\right.
$$

and energy E at minimum scattering
> Example: Ramsauer Townsend Effect
> Electron transmission through (krypton) gas as a function of energy

Attractive Potential Well \& Wave Packet

> Incident wave packet is partly reflected and partly transmitted

07/09/2011 PHYS255: Quantum \& Atomic Physics - E.S. Paul

Ramsauer Townsend Effect

> Slits define orbit (velocity, energy) of electron
$>$ " a " is diameter of gas atom

Reflectionless Potential

\rightarrow There is a shape of potential that prevents any reflection of a wave packet

10. Atomic Structure

> 10.1 More Than Orbital Angular Momentum
> 10.2 Electron Spin \& The Hydrogen Atom

- 10.3 Many-Electron Atoms
> 10.4 Fine Structure in Optical Spectra
10.5 The Zeeman Effect
> 10.6 Hyperfine Structure
10.7 The Lamb Shift
> 10.8 Rydberg Atoms

Atomic Structure

> From quantum physics so far:
$>$ If one particle moves in a central potential

$$
V(\underline{r})=V(r, \theta, \varphi)=V(r)
$$

then the energy is quantised according to

$$
E=E_{n e}
$$

> Here:

$$
n \geq 1, l \geq 0
$$

$>\ell$ specifies the quantised angular momentum ${ }^{2} L^{2}$

$$
L^{2}=\ell\{\ell+1\} \hbar^{2}
$$

$>m(-\ell,-\ell+1, \ldots 0, \ldots l-1, \ell)$ specifies the projection L_{z} of L on a fixed direction z

$$
L_{z}=m \hbar
$$

Try to understand above in understanding atoms

07/09/2011 PHYS255: Quantum \& Atomic Physics - E.S. Paul

Hydrogen Atom Degeneracies

Energy / \{me $\left./ 32 \pi^{2} \varepsilon_{0}{ }^{2} \hbar^{2}\right\}$	n	l	m	degeneracy
-1	1	0	0	one
$-1 / 4$	2	0	0	
$-1 / 4$	2	1	$\pm 1,0$	four
$-1 / 9$	3	0	0	
$-1 / 9$	3	1	$\pm 1,0$	nine
$-1 / 9$	3	2	$\pm 2, \pm 1,0$	

> Sub-shells within an energy shell are degenerate

$n \ell$ Quantum Numbers

> Principal quantum number n is written as a digit
> Angular momentum quantum number l is written as:
$\left.\begin{array}{lll}l=0 & s & \text { "sharp" } \\ l=1 & \mathrm{p} & \text { "principal" } \\ l=2 & \mathrm{~d} & \text { "diffuse" } \\ l=3 & \mathrm{f} & \text { "fundamental" } \\ l=4 & 9 \\ l=5 & \mathrm{~h} \\ l=6 & \mathrm{i}\end{array}\right\}$ now alphabetical

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Central Field Approximation

$>$ Neutral atom, atomic number Z
> nucleus $+Z$ electrons in a bound state
\rightarrow For electron $\mathrm{i}(\mathrm{i}=1,2, \ldots \mathrm{Z})$:

$$
\begin{gathered}
V_{i}\left(r_{i}\right)=-Z e^{2} / 4 \pi \varepsilon_{0} r_{i}+\sum e^{2} / 4 \pi \varepsilon_{0} r_{i j} \\
\\
\begin{array}{c}
e^{-}-\text {nucleus } \\
\text { attraction }
\end{array} e^{-}-e^{-} \text {repulsion }
\end{gathered}
$$

$>$ Definitely not central!
> Now write:

$$
V_{i}\left(r_{i}\right)=V\left(r_{i}\right)+\Delta V\left(r_{i}, r_{i j}\right) \quad \Delta V\left(r_{i}, r_{i j}\right) \text { small }
$$

\rightarrow Approximate motion of an electron in an atom as that of an electron in a central potential and expect only small corrections ΔV

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Electrons in Atoms

$>$ Each electron contributes an energy $E_{n e}$ to the total energy of the atom:

$$
E=\sum E_{i, n e} \quad \text { summation } i=1, Z
$$

\rightarrow Electrons in the atom can be specified by their configuration in sub-shells:

$>$ And only small corrections need to be made
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

10.1 More than Orbital Angular Momentum

> Stern Gerlach experiment: a neutral $(\Sigma$ charge $=0)$ atomic beam passes through a region of non-uniform magnetic field
> Beam is split into components!
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Stern Gerlach Experiment

\Rightarrow How is a neutral atomic beam split?
$>$ Why is a non-uniform magnetic field necessary ?
> Force on a magnetic dipole μ in a region of non-uniform field \underline{B} is:

$$
\underline{F}=(\underline{\mu} \cdot \underline{\nabla}) \underline{B} \quad \text { if } B \text { was uniform then any }
$$

$$
\text { differential }=0 \text { and hence } F=0
$$

$>$ Atoms in beams must have magnetic dipole moments
> How?

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Magnetic Dipole Moment

> Atoms are distributions in space of moving charge, i.e. current
\Rightarrow Atomic electrons are currents
\Rightarrow Currents interact with field B

$>$ Current loops interact with changes in field B
$>$ Current loops generate magnetic dipole moment

> Consider a current loop of arbitrary shape with area A:
> Current I due to flow of n "lumps" per unit length of charge q at velocity v :

$$
I=n q v
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Magnetic Dipole Moment

$>$ Length dS contributes to angular momentum L
$>$ If each lump of charge has mass m :

$$
\mathrm{dL}=\underbrace{\mathrm{ndSm}}_{\text {total mass }} \vee r \underbrace{\mathrm{~d}}_{\text {velocity }} \text { distance }
$$

$>$ The total angular momentum is then given by:

$$
\begin{aligned}
L & =n m \vee \oint_{S} r d S & & d A=\frac{1}{2} r d S \\
& =n m \vee 2 A & & \text { i.e. } 2 d A=r d S
\end{aligned}
$$

> Or, area:

$$
A=L / 2 \mathrm{mnv}
$$

$>$ Electromagnetism of current loop of any shape:

$$
\text { magnetic moment: } \mu=I A=n q \vee A
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Magnetic Dipole Moment

> Substituting for A gives:
> Hence:

$$
\mu=n q \vee L / 2 m n v
$$

$$
\underline{\mu}=\{\mathrm{q} / 2 \mathrm{~m}\} \underline{\underline{L}}
$$

no dependence on n, no dependence on shape of loop
$>$ For atoms the loops of current are distributed everywhere, $q \Rightarrow-e, m=$ electron mass
\rightarrow The relation between total magnetic moment μ and total orbital angular momentum \underline{L} is thus:
$>$ Or:

$$
\underline{\mu}=-\{e / 2 m\} \underline{\underline{L}}
$$

$$
\underline{\mu}=g_{\ell}\left\{\mu_{B} / \hbar\right\} \underline{L} \text { where } \mu_{B}=-\{e \hbar / 2 m\} \text { Bohr }
$$

07/09/2011 PHYS255: Quantum \& Atomic Physics - E.S. Paul
263

Magnetic Dipole Moment

$>$ Atomic magnetic moments are best quoted in units of the Bohr magneton μ_{B}
$>$ Note that "orbital g-factor" $g_{e}=1$
> Back to atomic beam:
\rightarrow Force in non-uniform field on atoms

$$
\underline{F}=(\mu \cdot \underline{\nabla}) \underline{B}
$$

$>$ The field is designed so that:

$$
\underline{F}=\left(0,0, F_{z}\right)
$$

> Then:

$$
F_{z}=(\underline{\mu} \cdot \underline{\nabla}) \underline{B}=\mu_{z} \partial B_{z} / \partial z \text { if } \partial B_{z} / \partial x=\partial B_{z} / \partial y=0
$$

$>$ Or:

$$
F_{z}=g_{e}\left\{\mu_{B} / \hbar\right\} L_{z} \partial B_{z} / \partial z
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Force on Atomic Beam

Vector Model of Total Angular Momentum
> The non-uniform magnetic field establishes a direction for spatial quantisation:

$$
\begin{array}{ll}
L_{z}=m \hbar & m=-l,-l+1, \ldots 0, \ldots l-1, l \\
F_{z}=\left\{g_{\ell} \mu_{B} \partial B_{z} / \partial z\right\} m &
\end{array}
$$

$>$ The (neutral) atomic beam should split into $(2 \ell+1)$ components, provided $l>0$

BUT: Some beams split into even number of components !

\rightarrow Problem:
$F \propto m$
$(2 l+1)$ odd
$m=0$ no deflection
$>$ Something is wrong!

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

> Orbital angular momentum \underline{L} and electron intrinsic spin \underline{S} are combined to produce total angular momentum J
$>$ Both the \underline{L} and \underline{S} vectors precess around the direction of the J vector
> The vector \bar{J} is a constant of the motion

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Angular Momentum Quantum Numbers

Solution: Intrinsic Spin

> Uhlenbeck and Goudschmidt proposed that an additional contribution to the angular momentum of the atom, and therefore the magnetic moment of the atom, arises from the intrinsic spin of each electron
$>$ The total angular momentum of the atom is:

vector addition
$>$ The total magnetic moment of the atom is:

$$
\underline{\mu}=\underline{\mu}_{L}+\underline{\mu}_{S} \quad \text { vector addition }
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul
$>$ Orbital angular momentum:

$$
L^{2}=\ell\{\ell+1\} \hbar^{2} \quad l=0,1,2 \ldots \quad \text { integer }
$$

\Rightarrow Spatial quantisation:

$$
L_{z}=m \hbar \quad m=-l,-l+1, \ldots 0, \ldots l-1, l
$$

> Spin:

$$
S^{2}=s\{s+1\} \hbar^{2} \quad s=1 / 2,3 / 2, \ldots . \quad \text { half-integer }
$$

- Spatial quantisation:

$$
S_{z}=m_{s} \hbar \quad m_{s}=-s,-s+1, \ldots 0, \ldots s-1, s
$$

$>$ For one electron:

$$
\text { Spin }=\frac{1}{2}
$$

> Hence:
\Rightarrow

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Angular Momentum Coupling

\Rightarrow Coupling $\underline{\underline{L}}$ and \underline{S} gives rise to the total angular momentum:

$$
J=|\underline{L}+\underline{S}|
$$

$>$ Total angular momentum:

$$
J^{2}=j\{j+1\} \hbar^{2} \quad j=|\underline{l}+\underline{s}| \quad \text { integer or half-integer }
$$

> Spatial quantisation:

$$
J_{z}=m_{j} \hbar \quad m_{j}=-j,-j+1, \ldots 0, \ldots j-1, j
$$

$>$ We now know that any particle can have a degree of freedom called spin (s)
> This spin can be integer or half-integer
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Particles and Spin

$>$ Spin arises because we live in a world in which Einstein's theory of special relativity holds
$>$ The world is Lorentz invariant
> Particles with integer spin are called bosons

$$
S_{z}=0 \hbar,(\pm \hbar, 0),(\pm 2 \hbar, \pm \hbar, 0)
$$

> Examples:
some molecules, atoms, nuclei, hadrons, $W^{ \pm}, Z_{0}$, photons
>Particles with half-integer spin are called fermions

$$
S_{z}= \pm \frac{1}{2} \hbar, \ldots
$$

> Examples:
electrons, quarks, protons, nuclei,....

Electron Spin

\rightarrow Electron spin S is a contribution to angular momentum
$>$ It is quantised according to the rules for angular momentum:

$$
\begin{array}{ll}
S^{2}=s\{s+1\} \hbar^{2} & s=1 / 2 \\
S_{z}=m_{s} \hbar & m_{s}= \pm \frac{1}{2}
\end{array}
$$

\Rightarrow The electron is a fermion
> Contribution to magnetic moment:

$$
\underline{\mu}_{s}=g_{s}\left\{\mu_{B} / \hbar\right\} \underline{S} \quad g_{s} \text { is spin g-factor }
$$

\rightarrow Dirac:

$$
g_{s}=2
$$

$$
\text { remember } g_{l}=1
$$

- Full relativistic theory of quantum physics gives:

$$
g_{s}=2+\text { very tiny additions }
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Stern Gerlach Experiment \& Hydrogen

> H atom ground state:

$$
1 s^{1} \quad 1 \text { electron in } s \text { subshell with } \ell=0
$$

$>$ Since it has no orbital angular momentum:

$$
\begin{aligned}
& J=|\underline{L}+\underline{S}|=S \\
& J_{z}=S_{z}= \pm \frac{1}{2} \hbar
\end{aligned}
$$

> Magnetic dipole moment:
> Force:

$$
\mu_{z}=g_{s}\left\{\mu_{B} / \hbar\right\} S_{z}= \pm \frac{1}{2} g_{s} \mu_{B}= \pm \mu_{B} \quad g_{s}=2
$$

$$
F_{z}= \pm \mu_{B} \partial B_{z} / \partial z
$$

$>H$ atom splits into two components (even) symmetrically due only to magnetic moment from electron spin
$>$ Spin $\frac{1}{2}$ of electron confirmed!
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

10.2 Electron Spin \& Hydrogen Atom

$>$ Exact solution of Schrödinger equation for one electron moving under the influence of Coulomb potential:

$$
V(r)=\left\{-e^{2} / 4 \pi \varepsilon_{0} r\right\}
$$

> Accidental degeneracy in ℓ :

$$
l=0,1,2, \ldots(n-1)
$$

> Orbital angular momentum degeneracy in m :

$$
m=-l,-l+1, \ldots 0, \ldots l-1, l
$$

\Rightarrow And now spin $\frac{1}{2}$ angular momentum degeneracy in m_{s} :

$$
m_{s}=-\frac{1}{2},+\frac{1}{2}
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Spin-Orbit Coupling

> The (central) Coulomb potential:

$$
V(r)=\left\{-e^{2} / 4 \pi \varepsilon_{0} r\right\}
$$

does not include the effects of the magnetic moments in the atom
\rightarrow There is an interaction between $\underline{\mu}_{s}$ due to spin angular momentum of electron with $\underline{\mu}_{e}$ due to the orbital angular momentum of the electron

- When fixed in space relative to each other, the energy depends only on their relative orientation:

$$
\Delta \mathrm{E} \propto \underline{\mu}_{s} \bullet \underline{\mu}_{\ell}
$$

$>$ Here $\Delta \mathrm{E}$ is the addition (or subtraction) to the total energy of the hydrogen atom due to this additional interaction
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Spin-Orbit Energy

> Magnetic interaction between μ_{s} and μ_{e}
μ_{ρ} is in magnetic field of μ_{ℓ} of orbital motion of electron
> Spin-orbit interaction energy:

$$
\Delta E \propto \mu_{s} \bullet \mu_{l} \propto S \cdot \underline{S}
$$

$\underline{\mu}_{s}=g_{s}\left\{\mu_{B} / \hbar\right\} \underline{S} \quad \underline{\mu}_{e}=g_{e}\left\{\mu_{B} / \hbar\right\} \underline{L}$
> The energy ΔE is added to the total energy of the H atom from solution of the Schrödinger equation with the electron in Coulomb potential function:

$$
V(r)=\left\{-e^{2} / 4 \pi \varepsilon_{0} r\right\}
$$

$>$ The energy levels are now:

$$
E=E_{n l}+\Delta E
$$

\Rightarrow What are the quantum numbers ?
07/09/2011 PHYS255: Quantum \& Atomic Physics - E.S. Paul

Spin-Orbit Energy

$>$ Now:

$$
\Delta E \propto g_{s} g_{e}\left\{\mu_{B} / \hbar\right\}^{2} \underline{S} \cdot \underline{L}
$$

$>$ The total angular momentum of the hydrogen atom is:

$$
\underline{J}=\underline{L}+\underline{S}
$$

> Therefore:

$$
\underline{J}^{2}=(\underline{L}+\underline{S})^{2}=\underline{L}^{2}+\underline{S}^{2}+2 \underline{S} \cdot \underline{L}
$$

$>$ And so:

$$
\underline{S} \cdot \underline{L}=\frac{1}{2}\left(J^{2}-L^{2}-S^{2}\right)
$$

\rightarrow Hence the energy is:

$$
\Delta E \propto \frac{1}{2} g_{s} g_{l}\left\{\mu_{B} / \hbar\right\}^{2}\left(J^{2}-L^{2}-S^{2}\right)
$$

$>$ We can now substitute for J^{2}, L^{2} and S^{2}

Spin-Orbit Splitting

$>$ The spin-orbit interaction "lifts" some of the degeneracy on l of Hatom energy
> Small shift and splitting of energy levels:

$$
E=E_{n \ell}+\Delta E \Rightarrow E_{n \ell j}
$$

$>$ Notation:

$$
n l_{j} \text { e.g. } 1 s_{1 / 2}, 2 p_{1 / 2}, 2 p_{3 / 2}
$$

> Spectral lines are split:
"Fine structure"
$>$ Selection rules for transitions:

$$
\Delta l= \pm 1, \Delta j=0, \pm 1
$$

Spin-Orbit Energy

> From quantum physics:

$$
\begin{array}{l|l}
L^{2}=l\{l+1\} \hbar^{2} & L_{z}=m \hbar \\
S^{2}=s\{S+1\} \hbar^{2}=\frac{1}{2}\left\{\frac{1}{2}+1\right\} \hbar^{2}=\frac{3}{4} \hbar^{2} & S_{z}=m_{s} \hbar= \pm \frac{1}{2} \hbar \\
J^{2}=j\{j+1\} \hbar^{2} & J_{z}=m_{j} \hbar
\end{array}
$$

\rightarrow Where:
$l=0,1,2, \ldots$

$$
\text { j integrally spaced } l \pm \frac{1}{2}
$$

> Hence:

$$
\begin{aligned}
\Delta E & \propto \frac{1}{2} g_{s} g_{\ell}\left\{\mu_{B} / \hbar\right\}^{2}\left[j(j+1)-l(l+1)-\frac{3}{4}\right] \hbar^{2} \\
& \propto j(j+1)-l(l+1)-\frac{3}{4}
\end{aligned}
$$

\rightarrow Each energy level $E_{n l}$ has ΔE, which depends on j and l, added to it

Spin-Orbit Splitting: Summary

\rightarrow Spin-orbit coupling, due to the magnetic interaction of the electron spin and orbital angular momenta, gives rise to "fine structure" in atomic spectra of hydrogen
$>$ It is "fine" because of the small, magnetic interaction between spin and orbital motion
> Full calculations based on relativity and quantum physics (Dirac) imply that the spin-orbit interaction and its effects are due to special relativity on the electron motion
>Final result for the hydrogen atom:

$$
E=E_{n e}+\Delta E \Rightarrow E_{n j}
$$

still (accidental) degeneracy on l

Example: H Atom s and p States

$>$ Solution of Schrödinger equation with:

$$
V(r)=\left\{-e^{2} / 4 \pi \varepsilon_{0} r\right\}
$$

yields energies:

$$
E=E_{n l}
$$

with accidental degeneracy on l

$$
\text { e.g. } E_{3 s}=E_{3 p}=E_{3 d}
$$

> Total angular momentum quantum number j specified by:

$$
\begin{array}{lll}
\dot{j}=\underline{l}+\underline{s} \\
\text { e.g. } & 3 s_{1 / 2} & 3 p_{1 / 2,3 / 2} \\
& 3 d_{3 / 2,5 / 2} \\
\left|\underline{0}+\frac{1}{2}\right| & \left|\underline{1}+\frac{1}{2}\right| & \left|\underline{\underline{2}}+\frac{1}{2}\right|
\end{array}
$$

$>$ Small interaction, spin-orbit coupling:

$$
E=E_{n e} \Rightarrow E_{n j}
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

H Atom Fine Structure

Electron in Coulomb potential	spin-orbit interaction of electron
Accidental degeneracy in ℓ	Accidental degeneracy in l
Degeneracy in m and $m_{s}= \pm \frac{1}{2}$	Degeneracy in m_{j} and $m_{j}=m_{l} \pm \frac{1}{2}$
Transition: $2 p \Rightarrow 1 s$ 1 line	$\begin{aligned} \text { Transitions: } 2 p_{1 / 2} \Rightarrow 1 s_{1 / 2} \\ 2 p_{3 / 2} \Rightarrow 1 s_{1 / 2} \end{aligned}$
"singlet"	"doublet"
07/09/2011 PHYS255: Quantum	tomic Physics - E.S. Paul

Fine Structure Constant α

$>$ The energies of the (fine structure) of the hydrogen atom may be expressed as:

$$
E=-\left\{m e^{4} / 32 \pi^{2} \varepsilon_{0}{ }^{2} \hbar^{2}\right\}\left\{1 / n^{2}\right\}\left[1+\alpha^{2} / n\left(1 /\left\{j+\frac{1}{2}\right\}-3 / 4 n\right)\right]
$$

which defines the "fine structure constant" α :

$$
\alpha=e^{2} / \hbar c
$$

$>$ Its value is:

$$
\alpha \sim 1 / 137
$$

10.3 Many-Electron Atoms

$>$ In the central field approximation, each electron contributes an energy $E_{n e}$ where n is the principal quantum number and l is the orbital angular momentum quantum number
$>$ The quantum numbers n, l specify an "energy subshell"
$>$ In an atom with more than one electron, the minimum energy of the atom (ground state) would have all electrons in the lowest energy sub-shell: $n=1, \ell=0: 1 \mathrm{~s}$
$>$ This is not consistent with observation

- E.g. zero orbital angular momentum of each electron and therefore also of atom \Rightarrow Stern-Gerlach splitting of 2 only !

07/09/2011 PHYS255: Quantum \& Atomic Physics - E.S. Paul

Pauli Exclusion Principle

> In a many-electron system, only one electron may be assigned to one quantum state
$>$ Quantum state $=$ one (unique) set of quantum numbers
= one (unique) wave function
> "Only one electron": probability density for two or more electrons is zero
> Pauli principle is fundamental
> It arises in the quantum field theory of particles where there is a distinction between half-integer particles (fermions) and integer spin particles (bosons)

Proof is not straightforward!

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Identical Particles

$>$ Identical particles cannot be distinguished by means of any intrinsic properties
> This can lead to effects that have no classical analogue

Fermions and Bosons

\rightarrow Two identical fermions (e.g. two electrons with the same spin orientation) cannot occupy the same point in space, nor can they have the same value of momentum
> Pauli Exclusion Principle

- Each fermion has a unique set of quantum numbers
> Two particles are identical if there are no interactions that can distinguish them
> A physical observable must be symmetric with respect
\rightarrow Two non-interacting bosons can occupy the same point in space, or they can have the same value of momentum
> Boson condensation
to the interchange of any pair of particles

Bosons and Fermions

$>$ The time-dependent Schrödinger equation for two identical particles is:

$$
\{i \hbar \partial / \partial+\} \Psi\left(\underline{r}_{1}, \underline{r}_{2}\right)=H\left(\underline{r}_{1}, \underline{r}_{2}\right) \Psi\left(\underline{r}_{1}, \underline{r}_{2}\right)
$$

$>$ As

$$
H\left(\underline{r}_{1}, \underline{r}_{2}\right)=H\left(\underline{r}_{2}, \underline{r}_{1}\right)
$$

there are two fundamentally different kinds of solution:

$$
\Psi\left(\underline{r}_{1}, \underline{r}_{2}\right)=\Psi\left(\underline{r}_{2}, \underline{r}_{1}\right)
$$

symmetric boson
and

$$
\Psi\left(\underline{r}_{1}, \underline{r}_{2}\right)=-\Psi\left(\underline{r}_{2}, \underline{r}_{1}\right) \quad \text { antisymmetric fermion }
$$

Bose-Einstein Condensate

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Many-Electron Atoms

> Many-electron wave function:

- Each of the Z atomic electrons moves in the same potential $V(r)$
> All other interactions are small
\Rightarrow The quantum states are labelled by:
n principal quantum number
l orbital angular momentum quantum number
m spatial quantisation quantum number
$s=\frac{1}{2} \quad$ spin angular momentum quantum number
$m_{s}= \pm \frac{1}{2} \quad$ spatial quantisation quantum number
assigned to each electron

The Elements

The number of protons (or electrons) defines an element
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Electron Configurations

Electron configuration:
(inert) closed-shell core + valence electrons
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

(Valence) Electron Configurations

\square meal\square metalold

Electron configuration:
(inert) closed-shell core + valence electrons
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Many-Electron Atoms

$>$ Considering two electrons in quantum states (1) and (2), we can write the overall wave function:

$$
\Psi=\Psi_{1}{ }^{(1)} \Psi_{2}{ }^{(2)}
$$

$>$ However this includes the possibility of "identical states", i.e. $(1)=(2)$:
$\Psi=\Psi_{1}{ }^{(1)} \Psi_{2}{ }^{(1)}$ so $|\Psi|^{2} \neq 0 \quad$ violates Pauli principle
\rightarrow If the wave function of two electrons is written:

$$
\Psi=\{1 / \sqrt{ }\}\left[\Psi_{1}{ }^{(1)} \Psi_{2}{ }^{(2)}-\Psi_{1}{ }^{(2)} \Psi_{2}{ }^{(1)}\right]
$$

then if (1) = (2):
$\Psi=0$ and $|\Psi|^{2}=0$ does not violates Pauli principle

- Deeper statement of Pauli principle:
- Wave function of a many-electron (fermion) system must be antisymmetric $(\Psi \Rightarrow-\Psi)$ when any two electrons are interchanged
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Electron Configurations

Sub-shell filling

Electron configurations spin up, spin down

Many-Electron Atom in Central Field

> Atom with Z electrons:

- Each electron is assigned to a single wave function specified by a unique combination of the following quantum numbers:
$>$ Sub-shells are filled in order of increasing energy following the Pauli principle
- Energy of atom = sum of energies of each electron (specified by sub-shell)
> 'Capacity' of sub-shell

Pauli principle $\quad m_{s}= \pm \frac{1}{2} \quad$ allowed values of m

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Shell Structure (Magic Numbers)

> Full shells more bound highest ionisation energy smallest atomic radius
$>$ Full shell +1
least bound
largest atomic radius
$>$ Closed shells define a se \dagger of magic numbers

21018365486 ..

Closed (Full) Electron Shells

\rightarrow A full (n, ℓ) sub-shell of $2(2 \ell+1)$ electrons:
$>$ contributes to the energy of the atom
> has each quantum state, wave function, assigned to an electron
\Rightarrow Total $L_{z}=0$ given by total sum of all m
\Rightarrow Total $S_{z}=0$ given by total sum of all m_{s}
\Rightarrow Total $J_{z}=0$ given by total sum of all m_{j}
$>$ Hence it follows that a full sub-shell contributes zero to the (total angular momentum) ${ }^{2}\left(\mathrm{~J}^{2}\right)$ and its projection $J_{z}=m_{z} \hbar$ of the atom
> There is also no contribution to the magnetic dipole moment

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Ground State of $\mathrm{Fe}(\mathrm{Z}=26)$

$>$ Optically active electrons are in the 3d sub-shell

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Partially Filled Electron Shells

> Partially filled sub-shell(s) contribute to the total angular momentum of an atom
> J, m_{j} not necessarily zero
> empty states accessible (to electrons if atom excited)
>Spectroscopy of many-electron atoms is determined by "optically active" electrons in partially filled subshells
> Structure of spectroscopy from sub-shells

10.4 Fine Structure in Optical Spectroscopy

Total Spin of Atomic Configurations

3s \qquad
> Central field approximation:
> 1 optically active electron de-excites releasing a photon of energy:

$$
E=E_{3 s}-E_{2 p}
$$

\rightarrow Example: ${ }_{6} \mathrm{C}$

$$
\begin{array}{lll}
\text { ground state: } & 1 s^{2} 2 s^{2} 2 p^{2} & \text { (capacity 2 26) } \\
\text { excited state: } & 1 s^{2} 2 s^{2} 2 p^{1} 3 s^{1} & (\text { (capacity 2 262) } \\
& \text { closed optically active }
\end{array}
$$

- Fine structure is observed: "splitting of energy levels"
> Energy of atom = energy assuming central field approximation + small corrections (residual interactions)

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

e.g. $2 p^{2}$ electrons
> The total spin S of an atomic configuration is given by the vector sum of all optically active electrons:

$$
S=\left|\sum \frac{1}{2}\right|
$$

$>$ The total orbital angular momentum L of an atomic configuration is given by the vector sum of all optically active electrons:

$$
L=|\Sigma \underline{l}|
$$

$>$ The total angular momentum J of an atomic configuration is given by the vector sum:

$$
J=|\underline{L}+\underline{S}|
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul
$>$ Residual interactions are ignored in the central field approximation
> remaining non-central pieces of fields experienced by each atom
$>$ spin-orbit interactions (magnetic $\propto \underline{S} \cdot \underline{\bullet}$)
> Configurations of electrons in partially filled sub-shells with different total spin S, total orbital angular momentum L, and total angular momentum J have different energies
> Full sub-shells, with only $\mathrm{J}=0$ contribution to atom have energies shifted

07/09/2011

Carbon Ground State

```
> C ground state : 1s 2 2s 2p 2 (capacity 2 2 6)
```

$$
>2 \text { valence electrons }\left(s=\frac{1}{2}\right) \text { : }
$$

$>S=0$ requires electrons in different m_{s} states, antisymmetric under interchange of electrons
$>S=1$ can have electrons in same m_{s} state, symmetric under interchange

>2 electrons in $2 p$ subshell $(l=1)$:
$>L=0$ symmetric under exchange
$>L=1$ antisymmetric under exchange
$>L=2$ symmetric under exchange

Carbon Ground State

\rightarrow We require overall antisymmetry under exchange
$>(n, l)$ sub-shell same for both electrons symmetric
> Total spin $\mathrm{J}=|\underline{L}+\underline{S}|:$

$$
\begin{array}{ccc}
J=|\underline{0}+\underline{0}| & |\underline{2}+\underline{0}| & |\underline{1}+\underline{1}| \\
\text { sym. anti. } & \text { sym. anti. } & \text { anti. sym. } \\
{ }^{1} S_{0} & { }^{1} D_{2} & { }^{3} P_{2}{ }^{3} P_{1}{ }^{3} P_{0} \\
\text { highest energy } & & \text { lowest energy }
\end{array}
$$

> Fine structure spectroscopic notation:
> Each with different energy:
Largest S lowest energy $\}$ residual electrostatic
Then largest L lowest energy $\}$ interactions
Then smallest J lowest energy spin-orbit

Carbon Excited State

```
> C excited state: 1s 2s 2s}2\mp@subsup{p}{}{1}3\mp@subsup{s}{}{1}\quad\mathrm{ (capacity 2262)
```

>2 electrons: $S=0, S=1$
$\left.\begin{array}{l}>1 \text { electron in } p \text { subshell } l=1 \\ >1 \text { electron in } s \text { subshell } \ell=0\end{array}\right\} L=1$
$>$ n quantum numbers different (Pauli OK) antisymmetric
$>$ States $\mathrm{J}=|\underline{\mathrm{L}}+\underline{\mathrm{S}}|$:

$$
\begin{array}{cc}
J=|\underline{1}+\underline{0}| & |\underline{1}+\underline{1}| \\
{ }_{1} P_{1} & { }^{3} P_{2}{ }^{3} P_{1} 3 P_{0} \\
\text { highest energy } & \text { lowest energy }
\end{array}
$$

$$
2 \mathrm{~S}+1 \mathrm{~L}_{\mathrm{J}}
$$

$>$ So what transitions are possible?
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Carbon Fine Structure

Electron Configurations: Summary

$>$ Single electron (hydrogen atom level energies)
Couple l and s to produce j
> Labels:

$$
\text { nl } l_{j} \text { e.g. } 1 s_{1 / 2} \text { ground state }
$$

> Multi electron configurations
1 Split into inert core (filled shells) plus outer (valence) electrons
2 Couple the l values to produce L
3 Couple the s values to produce S
4 Couple L and S to produce J
(fermion asymmetry)
> Labels:
${ }^{2 S+1} L_{J} \quad$ e.g. ${ }^{3} P_{1}$
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

10.5 Zeeman Effect

> Atomic spectra change when subjected to an applied magnetic field
>Fine structure splits into (yet more !) lines

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Angular Momentum in a Magnetic Field

$>$ Recall that the \underline{L} and \underline{S} vectors precess about the direction of the \underline{J} vector
\rightarrow Now the J vector precesses around the direction of the B field
$>$ Now m_{j} is the constant of motion
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Zeeman Effect

$>$ The magnetic moment of the atom interacts with the applied magnetic field:
$E_{\text {atom }}=E_{\text {central field approx }}+E_{\text {residual }}+\Delta E_{\text {applied magnetic field }}$
\rightarrow The interaction energy is:

$$
\Delta E=-\underline{\mu} \cdot \underline{B}
$$

> With:
$\underline{\mu}=g_{j}\left\{\mu_{B} / \hbar\right\} \underline{J}$
> Where:
μ_{B} is the Bohr magneton
g_{j} is the Landé g factor which depends on the atomic state (cf spin 9 factor of electron)

$$
g_{j}=1+\{[(j(j+1)+s(s+1)-\ell(\ell+1)] / 2 j(j+1)\}
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Interaction Energy

\rightarrow For an atom in configuration ${ }^{2 S+1} L_{J}$:

$$
\Delta E=g_{j}\left\{\mu_{B} / \hbar\right\} B J_{z}
$$

when the uniform magnetic field is applied along the z axis (spatial quantisation axis)
> Now:
> Hence:

$$
J_{z}=m_{j} \hbar
$$

$$
\Delta E=g_{j} \mu_{B} B m_{j}
$$

> Splitting of energy level given by m_{j} (similar but not identical with Stern Gerlach experiment)
> proportional to B
$>$ depends on detailed atomic configuration (g_{j})
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Zeeman Effect in Sodium

> Sodium has 11 electrons (closed shell + 1 extra electron)
${ }_{11} \mathrm{Na}$ ground state: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
${ }_{11} \mathrm{Na}$ excited state: $1 s^{2} 2 s^{2} 2 p^{6} 3 p^{1}$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul
319

Zeeman Effect: Selection Rules

> Transitions with:

$$
\begin{aligned}
& \Delta L= \pm 1 \\
& \Delta J=0, \pm 1
\end{aligned}
$$

are now split according to:

$$
\Delta m_{j}=0, \pm 1
$$

leading to many different transitions !
$>$ Note that if the applied magnetic field is large, i.e. much greater than the spin-orbit interaction, then the splitting can be different (Paschen-Back effect)

Paschen-Back Effect (Strong Field)

> The Zeeman splitting changes form in a strong magnetic field: the Paschen-Back Effect
> The field is strong enough disrupt the coupling between orbital L and spin S angular momenta

$$
\mu_{N}=\left\{e \hbar / 2 m_{p}\right\}
$$

$>$ Weak field (left):
> The vectors \underline{L} and \underline{S} couple to form \underline{J} which precesses around the direction of the magnetic field \underline{B}
$>$ Strong field (right):
\Rightarrow The vectors \underline{L} and \underline{S} couple more strongly to the external field \underline{B} rather than each other
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

10.6 Hyperfine Structure

> Yet more (very small) splitting of atomic transitions!
\rightarrow Just as electrons in motion give rise to an atomic magnetic dipole moment, protons in motion give rise to a nuclear dipole magnetic moment

$$
\underline{\mu}=g_{I}\left\{\mu_{N} / \hbar\right\} \underline{I} \text { where }
$$

\Rightarrow Note that: $\mu_{N}=\mu_{B} / 1836 \quad$ ratio of proton and e^{-}masses
$>$ The proton dipole moment will interact with both the spin dipole moment of the electron and the orbital dipole moment of the electron

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Proton and Neutron g Factors

$>$ Consider orbital l and intrinsic s angular momenta of the proton and neutron
> The orbital motion of the charged proton gives rise to a magnetic dipole moment and hence:

$$
g_{l}(\text { proton })=1
$$

$>$ The neutron is uncharged and hence:

$$
g_{l}(\text { neutron })=0
$$

$>$ Since the proton and neutron are composite objects, they have:

$$
g_{s}(\text { proton }) \approx 5.56 \text { and } g_{s}(\text { neutron }) \approx-3.83 \text { (!) }
$$

$>$ Thus the intrinsic spin of the uncharged neutron can give magnetic effects!

Recall $g_{e}($ electron $)=1$ and $g_{s}($ electron $) \approx 2.00$
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Hyperfine Interaction

$>$ The nuclear spin $\underline{\underline{I}}$ (made up of orbital and intrinsic spins of the neutrons and protons) couples with the electron spin J (again made up of orbital and intrinsic spin) to give total spin F :

$$
\underline{F}=\underline{J}+\underline{I}
$$

$>$ The magnitude of E is:
$|\underline{E}|=\sqrt{-}\{F(F+1)\} \hbar$

\rightarrow The quantum number F can take the values:

$$
F=J+I, J+I-1, \ldots, J-I
$$

> There are:

$$
(J+I)-|J-I|+1
$$

distinct components

[^0]PHYS255: Quantum \& Atomic Physics - E.S. Paul

Isotope Shift \& Hyperfine Structure

Hyperfine Interaction

\rightarrow The interaction energy between the nuclear magnetic moment and the magnetic field produced by the electron angular momentum is given by:

$$
\begin{aligned}
& \qquad \begin{aligned}
& E_{H F}=-\mu_{I} \cdot \underline{B}_{J}=\{a / 2\}[F(F+1)-I(I+1)-J(J+1)] \\
& \text { where: } \\
& \qquad a=\left\{g_{I} \mu_{N} B_{J}\right\} / \sqrt{ }\{J(J+1)\}
\end{aligned}
\end{aligned}
$$

> Hyperfine energy shifts are of the order:

$$
\left\{m_{e} / m_{p}\right\} \alpha^{2} E_{n} \quad \alpha \text { fine structure constant }
$$

> Measurement of the hyperfine structure of atomic transitions can yield the nuclear spin I if J is known

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Hyperfine Transition of Hydrogen

$>$ For the ground state of hydrogen the hyperfine splitting between the $\mathrm{F}=1$ and $\mathrm{F}=0$ states is

$$
\Delta E_{H F}=5.9 \times 10^{-6} \mathrm{eV}
$$

The photon corresponding to this transition has:

$$
\begin{aligned}
& v=1420.4057517667(10) \mathrm{MHz} \\
& \lambda=21.1 \mathrm{~cm}
\end{aligned}
$$

which is in the range of radio frequencies
> This is the source of the famous 21 cm line which is extremely useful to radio astronomers for tracking hydrogen in the interstellar medium of galaxies

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Hyperfine Structure in an External Magnetic Field

> In a weak magnetic field the shift of the atomic energy levels due to hyperfine splitting is:

$$
\Delta E_{H F}=g_{F} \mu_{B} B m_{F}
$$

with:

$$
\begin{aligned}
g_{F} & =g_{J}[\{F(F+1)+J(J+1)-I(I+1)\} /\{2 F(F+1)\}] \\
& -g_{I}\left\{\mu_{N} / \mu_{B}\right\}[\{F(F+1)+I(I+1)-J(J+1)\} /\{2 F(F+1)\}]
\end{aligned}
$$

$>$ We can neglect the second term since $\mu_{N}=\mu_{B} / 1836$
> The levels are split into 2F+1 equidistant components
07/09/2011 PHYS255: Quantum \& Atomic Physics - E.S. Paul

The Second \& The Metre

> Hyperfine structure transitions are used to make very precise atomic clocks, usually with caesium or rubidium atoms
> One second is now defined to be exactly 9,192,631,770 cycles of the hyperfine structure transition frequency of caesium-133 atoms
$>$ Since 1983 the metre is defined by declaring the speed of light in a vacuum to be exactly $299,792,458 \mathrm{~m} \mathrm{~s}^{-1}$
$>$ The metre is the length of the path travelled by light in vacuum during a time interval of $1 / 299,792,458 \mathrm{~s}$

10.7 The Lamb Shift

> According to Schrödinger theory, electron states in the hydrogen atom with the same n and j quantum numbers ought to be degenerate ($E_{n j}$),
e.g. $2 s_{1 / 2}$ and $2 p_{1 / 2}$ levels
> However a small energy shift is found, similar in size to the hyperfine structure
> This is known as the Lamb Shift

The Lamb Shift

$>$ A very small difference in the energies of the $2 s_{1 / 2}$ and $2 p_{1 / 2}$ states in hydrogen exists, even smaller than the hyperfine structure, and corresponds to a frequency of 1.06 GHz

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

H Atom Fine Structure (revisited)

$>$ According to Schrödinger theory, the $2 s_{1 / 2}$ and $2 p_{1 / 2}$ levels in hydrogen should be degenerate

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

The Electron 9 Factor

\rightarrow The Lamb shift provided a high precision verification of theoretical calculations made with the quantum theory of electrodynamics (QED)
> These calculations predict that electrons continually exchange photons, this being the mechanism by which the electromagnetic force acts
> The effect is to smear out the electron's position slightly and perturbs the electron g factor from its expected value of 2

Quantum Electrodynamics (QED)

\rightarrow QED can be used to calculate the electron g factor with great precision:

$$
g=2.002319304386
$$

$>$ This value agrees to many decimal places with the value obtained from the tiny Lamb shift
> Triumph for QED !

10.8 Rydberg Atoms

\Rightarrow A Rydberg Atom is an excited atom with one or more of its electrons that have a very high principal quantum number n
> These atoms have a number of peculiar properties:
> exaggerated response to electric and magnetic fields
> long decay periods
> electron wave-functions that approximate classical orbits of electrons about the nucleus

07/09/2011 PHYS255: Quantum \& Atomic Physics - E.S. Paul

Rydberg Atoms

$>$ Bohr's expression for the orbital radius r in terms of the principal quantum number n is
$r=a_{0} n^{2} \quad$ where $a_{0}=0.053 n m$ is the Bohr radius
\rightarrow For the $n=137$ state in hydrogen, the atomic radius is

$$
r=1 \mu \mathrm{~m} \quad \text { ! }
$$

> Thus Rydberg atoms are extremely large with loosely bound valence electrons, easily perturbed or ionised by collisions or external fields

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

[^0]: 07/09/2011

