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Hydrogen Atom Energies

En = {-me4 / 32π2ε0
2ħ2} {1/n2} = -13.6 eV / n2
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Hydrogen Atom Spectroscopy
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Selection Rules

 Transitions can only occur 
between states that 
differ in ℓ by 1, i.e.

Δℓ = ± 1
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Where is the Electron ?

 Electron probability density:

||2 = |RY|2

 Probability of finding the electron in a small region of the 
atom volume:

r2 dr dΩ = r2 dr d(cosθ) dφ Ω = solid angle

is:

|Rnℓ(r) Yℓm(θ,φ)|2 r2 dr dΩ

= |rRnℓ(r)|2 |Yℓm(θ,φ)|2 dr dΩ

= |nℓ(r)|2 |Yℓm(θ,φ)|2 dr dΩ

 Ask a mathematician !



52

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 205

Radial Dependence

 Radius of first Bohr orbit:

a0 = 4πε0ħ2 / me2   = 0.0529 nm

 Radial wave functions Rnℓ :

R10 = 2 {1/a0}3/2 exp{-r/a0}

R20 = [1/2√{2}] {1/a0}3/2 {2 - r/a0} exp{-r/a0}

 Radial probability density:

P(r) = |nℓ|2 = |rRnℓ|2

 As r  0 :

nℓ = rRnℓ  0

Rnℓ=0  0           s wave density

Rnℓ≠0  0           p, d,… wave density
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Radial Distributions: ℓ = 0

s waves

n = 1

n = 2

n = 3
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Radial Distributions: n = 2

ℓ = 0

ℓ = 1

2s

2p

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 208

Radial Distributions: n = 3

ℓ = 0

ℓ = 1

ℓ = 2

3s, 3p, 3d

H atom applet (also on VITAL)
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Angular Dependence

 Spherical harmonics Yℓm :

Y00 = √{1/4π}                                        ||2 isotropic

Y11 = -√{3/8π} sin{θ} exp{iφ}                 ||2  sin2{θ}

Y10 = √{3/4π} cos{θ}                              ||2  cos2{θ}

Y1-1 = √{3/8π} sin{θ} exp{-iφ}                 ||2  sin2{θ}

Y22 = √{15/32π} sin2{θ} exp{2iφ}           ||2  sin4{θ}

Y21 = -√{15/8π} sin{θ} cos{θ} exp{iφ}     ||2  sin2{θ}cos2{θ}

Y20 = √{5/16π} {3cos2{θ} - 1} ||2  (3cos2{θ} – 1)2

 In general Yℓm :

 has φ dependence exp{imφ}

 has polynomials in sin/cos{θ} to order ℓ
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The Orbitron

http://www.shef.ac.uk/chemistry/orbitron

3D Atomic Orbitals (n=3)

3s

3p

3d
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Summary: Hydrogen Atom

 Electron moving under influence of central potential:

V(r) = {-e2 / 4πε0r}

 Energy quantisation: 

En = {-me4/8ε0
2h2} {1/n2} = -Rhc/n2 = -13.6 eV / n2

 Accidental degeneracy on ℓ :

ℓ = 0, 1, 2… n-1

 Degeneracy on m :

m = -ℓ, -ℓ+1,… 0,… ℓ-1, ℓ

 Photon emitted/absorbed for Δℓ = ±1   selection rule

 Electron wave function:

nℓm =  Rnℓ(r) Yℓm(θ,φ)
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9. Wave Dynamics of Particles: 
Scattering

 9.1 Potential Step

 9.2 Potential Barrier

 9.3 Attractive Potential Well
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Classical Scattering

 A projectile hits 
a target and is 
scattered

 Particle 
scattering

 Wave scattering
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Scattering
 A particle moves under the influence of V(x) (1D) but is 

not confined

 It is unbound: 

|x| ∞ , ||2
 0

 It has a finite (but not infinite) probability density ||2

when far from scattering centre (V(x))

 It is (almost) a free particle far from region of V(x)

 Free particle:

 = A exp{ikx} or B exp{-ikx} (or a combination)

 Non-localised:

k > 0 and √{2mE} / ħ real  E > 0 positive energy

 Also remember:

 and d/dx are continuous
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Scattering: What is Measured ?

 Incident particle:

Probability that it is scattered with a given energy, 
momentum

 Incident particle flux:

Flux that it is scattered with a given energy, 
momentum

 Flux is defined as the number of particles per unit time
across unit perpendicular area

What is this in quantum physics ?
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 In classical physics, ―flux‖ is 
conserved

 Current J = n v A

n = number density

= particles per unit volume

 Current density j = J / A

j  = n v

 Conservation equation (1D)

∂ρ/∂t = -∂j/∂x

rate of change of density =       

- gradient of current density

Continuity of Flow
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Constant density:
water in a pipe:
water in = water out

Changing density:
―flow‖ in = ―flow‖ out

Velocity v
Area A
Density ρ

See  QMIntro.pdf
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Scattering: Flux

 Start with time independent Schrödinger equation:

-{ħ2/2m} d2
/dx2 + V(x)  = E 

 Multiply by * :

-{ħ2/2m} * d2
/dx2 + * V(x)  = * E 

 Write down complex conjugate:

-{ħ2/2m}  d2


*/dx2 +  V(x) * =  E *

 Subtract:


* d2

/dx2 -  d2


*/dx2 = 0

 This is equivalent to:

d/dx [* d/dx -  d*/dx] = 0

 Implying:

the quantity 
* d/dx -  d*/dx is conserved
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Quantum Flux Conservation

 Using the free particle solution:

 = A exp{ikx} + B exp{-ikx}

 It is found that:


* d/dx -  d*/dx = 2ik [|A|2 - |B|2]

 Or:

-i[* d/dx -  d*/dx] = 2k [|A|2 - |B|2] real

 Multiply by ħ/2m and remember p = ħk :

-{iħ/2m} [* d/dx -  d*/dx] = {p/m} [|A|2 - |B|2]

dimension of velocity x prob density

 Conservation of probability current density

 Quantum equivalent of flux !
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Quantum Scattering

 Using the free particle solution:
 = A exp{ikx} + B exp{-ikx}

 Probability current density is conserved

 It has a component (in the +ve x direction of):
+p/m |A|2

 It has a component (in the -ve x direction of):
-p/m |B|2

 Quantum equivalent to classical conservation of flux
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9.1 Particle and Potential Step
 Region 1 :

x < 0 V = -V0

 Region 2 :

x > 0 V = 0

 Use time independent 
Schrödinger equation for 
solutions in regions 1 and 2

 Region 1 :

1 = A1 exp{ik1x} + B1 exp{-ik1x}       k1 = √{2m(E + V0)} / ħ

 Region 2 :

2 = A2 exp{ik2x} + B2 exp{-ik2x}     k2 = √{2mE} / ħ

 Everywhere k1 and k2 are real and E > 0
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Continuity of Waveforms

 Waveforms in Quantum Mechanics must be ―continuous‖

 (x) must be single valued for all x

 d/dx must be single valued for all x

particularly at boundaries

  

(x) (x) (x)

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 223

Potential Step

 Apply continuity of  and d/dx at x = 0 :

A1 + B1 = A2 + B2                          two equations,

k1{A1 – B1} = k2{A2 – B2}       four unknowns

 Apply boundary conditions:

Far from scattering centre (x = 0) we have particle 
which was incident from left () now leaving 
(scattering) to right ()

 Flux to right after scattering is only  , hence:

2 = A2 exp{ik2x}    i.e.   B2 = 0

 Now we have:

A1 + B1 = A2 two equations,

{k1/k2} {A1 – B1} = A2 three unknowns
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Potential Step

 Solving, we can determine the relative normalisation of 
each plane wave in 1 and 2 :

B1 = A1 {k1 – k2} / {k1 + k2}

A2 = A1 2k1 / {k1 + k2}

 Hence in region 1 :

 = A1 exp{ik1x} +  [A1 {k1 – k2} / {k1 + k2}] exp{-ik1x}

incident ()               reflected or scattered ()

 In region 2 :

 = [A1 2k1 / {k1 + k2}] exp{ik2x}

transmitted or unscattered ()
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Potential Step

 Recall: Flux = {ħk/m} |A|2

 Incident flux, region 1 :

{ħk1/m} |A1|2

 Reflected flux, region 1 : 

{ħk1/m} |A1|2 [{k1 – k2} / {k1 + k2}]2

 Transmitted flux, region 2 :

{ħk2/m} |A1|2 [2k1 / {k1 + k2}]2

 It can be shown that the incident flux is equal to the sum
of the reflected (scattered) and transmitted
(unscattered) fluxes

Probability current density is conserved !
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Reflectivity & Transmissivity

 Reflectivity R (due to scattering):

R = {flux  }x<0 / {flux  }x<0

= [ {k1 – k2} / {k1 + k2} ]2

= [ (√{E} - √{E + V0}) / (√{E} + √{E + V0}) ]2

 Transmissivity T (not scattered):

T = {flux  }x>0 / {flux  }x<0

= 4k1k2 / (k1 + k2)2  

= 4√{E(E + V0)} / (√{E} + √{E + V0})2

 Large particle energy E » V0

R ~ 0,  T ~ 1       particle unaffected

 Small particle energy E ~ 0

R ~ 1,  T ~ 0       particle confined to x < 0
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Limit of Classical Physics

 No quantisation, i.e. ħ  0

k1 = √{2m(E + V0)} / ħ  ∞        de Broglie wavelength

k2 = √{2mE} / ħ  ∞                 gets small ( 0)

 Then: 

k1 – k2  0 difference of two large numbers

k1 + k2  ∞

 Therefore:

R  0,  T  1

 The particle is in no way or sense ―reflected‖ !

 It moves from the region (1) of kinetic energy (E + V0) to 
the region (2) of kinetic energy E
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Particle with Energy E < 0

 Region 1 :

k1 = √{2m(E + V0)} / ħ

 Region 2 :

k2 = √{2mE} / ħ imaginary

= i2

 Region 1 :

1 = A1 exp{ik1x} + B1 exp{-ik1x}       

 Region 2 :

2 = A2 exp{-2x} + B2 exp{2x}     i.e. B2 = 0
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Continuity of Waveforms

 Waveforms in Quantum Mechanics must be ―continuous‖

 (x) must be single valued for all x

 d/dx must be single valued for all x

particularly at boundaries

  

(x) (x) (x)
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Potential Step
 Apply continuity of  and d/dx at x = 0 :

A1 + B1 = A2

ik1{A1 – B1} = -2A2

 Solve (as before):

B1 = -A1 {2 + ik1} / {2 – ik1}

A2 = -A1 2ik1 / {2 – ik1}

 Hence in region 1 :

1 = A1 exp{ik1x} - [A1 {2 + ik1} / {2 – ik1}] exp{-ik1x}

 In region 2 :

2 = [-A1 2ik1 / {2 – ik1}] exp{-2x}
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Potential Step

 Note that the wave function 2 ≠ 0  
in region 2

 Probability density penetrates the 
barrier (cf finite square well)

 Reflectivity:

R = | {2 + ik1} / {2 – ik1} |2 = 1

 Particle is confined to x < 0
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Penetration Depth

Tutorial 3

Binding energy, energy below top of potential 

 The penetration depth L represents an approximate 
measure of how far the wave-function of a quantum 
particle penetrates into the classically forbidden region

 Defined when the probability density falls to 1/e of its 
value at x = 0

|2(x=L)|2 / |2(x=0)|2 = exp{-22L}   = exp {-1}

 So 

22L = 1

 Or

L =  ħ / [2√{2mE}]

 Note for ħ  0 (i.e. classical physics)       L = 0
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Potential Step: Summary

 A change of the potential energy function V(x) will cause 
the probability current density (flux) {p/m}|A|2 of an 
otherwise free particle to be reflected or scattered

 The probability density of a particle will penetrate into 
―unphysical‖ regions where the total energy is less than 
the potential energy V(x)

 Can a particle escape 
from a region where its 
total energy is less 
than V(x) ?

 Yes ! : tunnelling
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Potential Barrier and Wave Packet

 Incident wave packet is partly reflected and partly 
transmitted
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9.2 Particle and Potential Barrier
 Potential is of the form:

|x| > a/2     V = 0

|x| < a/2     V = V0

 Boundary conditions:

 Particle incident left to right

 Continuity of  and d/dx

 Region 1 : x < -a/2

1 = A1 exp{ikx} + B1 exp{-ikx} k = √{2mE} / ħ

 Region 2 : -a/2 < x < a/2

2 = A2 exp{-x} + B2 exp{x}  = √{2m(V0 - E)} / ħ

 Region 3 : a/2 < x

3 = A3 exp{ikx}                              k = √{2mE} / ħ
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Potential Barrier

 Continuity of  at x = -a/2 : 

A1 exp{-ika/2} + B1 exp{ika/2}

= A2 exp{a/2} + B2 exp{-a/2}

 Continuity of  at x = a/2 : 

A3 exp{ika/2} = A2 exp{-a/2} + B2 exp{a/2}

 Continuity of d/dx at x = -a/2 : 

ik[ A1 exp{-ika/2} - B1 exp{ika/2} ]

= [ -A2 exp{a/2} + B2 exp{-a/2} ]

 Continuity of d/dx at x = a/2 : 

ikA3 exp{-ika/2} = [ -A2 exp{-a/2} + B2 exp{a/2} ]

Four equations, five unknowns
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Potential Barrier

 Express the four unknowns B1 , A2 , B2 , A3 in terms of A1:

exp{ika/2} B1 – exp{a/2} A2 – exp{-a/2} B2 = -A1 exp{-ika/2}

exp{-a/2} A2 + exp{a/2} B2 – exp{ika/2} A3 = 0

ik exp{ika/2} B1 –  exp{a/2} A2 +  exp{-a/2} B2 = ikA1 exp{-ika/2}

 exp{-a/2} A2 –  exp{a/2} B2 + ik exp{ika/2} A3 = 0

 Solutions for B1/A1 , A2/A1 , B2/A1 , A3/A1 follow after 
much tedious but straightforward algebra !

 In particular:
A3/A1 = 4ik exp{-ika} / [ (k+i)2 exp{a} – (k-i)2 exp{-a} ] 

 Finite free particle solution in region 3 !

3 = A3 exp{ikx}    for x » 0 !
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Barrier Penetration

 Region 1 :
Free particle +  

―backscattering‖
 Region 2 :

―Exponential tunnelling‖
 Region 3 :

Free particle (same energy)
 Classical limit ħ = 0 : 

A3 = 0

 Flux in region 1 :

|A1|2 + |B1|2 +2Re[A1
*B1 cos{2ka}]    interference

 Flux in region 3 :

|A3|2 ≠ 0    quantum effect
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Barrier Penetration

 Transmissivity T :

T = k|A3|2 / k|A1|2

= 16k2


2 exp{-2a} / |(k + i)2 – (k - i)2 exp{-2a}|2

 In most solutions:

a = √{2m(V0 - E)}a / ħ is large

 Hence:

T ≈ 16k2


2 exp{-2a} / [(k2 - 2)2 + 4k2


2]

= 16k2


2 exp{-2a} / (k2 + 2)2 

 Or:

T = {16E(V0 – E) / V0} exp{-2a√{2m(V0 – E)} / ħ}

 Dominant dependence on E is exponential
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Alpha Decay of Atomic Nuclei

 Decay rate   T varies over many orders of magnitude

 Energy of alpha particle varies over a few orders of 
magnitude

 Quantum tunnelling through Coulomb barrier
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Scanning Tunnelling Microscope

 Current of electrons due to tunnelling through surface  
probe barrier

 Current  T  exp{-a}

 Current very sensitive to a

Measurement of atomic structure near surface

Scanning Tunneling Microscope
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STM Images (Liverpool)

Summary: Barrier Penetration 

Classical Picture
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Summary: Barrier Penetration

Quantum Picture
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Incident + Reflection
Interference

Exponential
Decay

Free Particle
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9.3 Particle & Attractive Potential Well

 Potential is of the form:

|x| > a/2     V = 0

|x| < a/2     V = -V0

 Boundary conditions:

 Particle incident left to right

 Continuity of  and d/dx

 Region 1 : x < -a/2

1 = A1 exp{ikx} + B1 exp{-ikx} k = √{2mE} / ħ

 Region 2 : -a/2 < x < a/2

2 = A2 exp{ik0x} + B2 exp{-ik0x} k0 = √{2m(E + V0} / ħ

 Region 3 : a/2 < x

3 = A3 exp{ikx}                            k = √{2mE} / ħ
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Attractive Potential Well

 After some tiresome algebra:
A3/A1 = -4kk0 exp{-ika} / [ (k - k0)2 exp{ik0a} – (k + k0)2 exp{-ik0a} ] 

which can also be written:
A3/A1 = -4kk0 exp{-ika} / [ 2(k2 - k0

2)2 i sin{k0a} – 4kk0 cos{k0a} ]

 Transmissivity T :
T = k|A3|2 / k|A1|2

= 4k2k0
2 / [ 4k2k0

2 cos2{k0a} + (k2 + k0
2)2 sin2{k0a} ]

= 1 / [ 1 + X sin2{k0a} ]                    X = (k2 - k0
2)2 / 4k2k0

2

 Maximum T when:
sin{k0a} = 0

 k0a = 2πa / 0 = nπ n integer
n 0 /2 = a

 Maximum when integer number of half wavelengths equals 
the width of the well
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Attractive Potential Well

 Maximum T occurs when:

[ √{2m(E + V0} / ħ ] a = nπ

where E is resonance energy

 Minimum T occurs when:

sin{k0a} = ±1 or  k0a = (n + ½)π n integer

corresponding to:

[ √{2m(E + V0} / ħ ] a = (n + ½)π

and energy E at minimum scattering

 Example: Ramsauer Townsend Effect

Electron transmission through (krypton) gas as a 
function of energy
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Ramsauer Townsend Effect

 Slits define orbit (velocity, energy) of electron

 ―a‖ is diameter of gas atom

k0a = nπ
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Attractive Potential Well & Wave Packet

 Incident wave packet is partly reflected and partly 
transmitted
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Reflectionless Potential

 There is a shape of potential that prevents any 
reflection of a wave packet



64

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 253

10. Atomic Structure

 10.1 More Than Orbital Angular Momentum

 10.2 Electron Spin & The Hydrogen Atom

 10.3 Many-Electron Atoms

 10.4 Fine Structure in Optical Spectra

 10.5 The Zeeman Effect

 10.6 Hyperfine Structure

 10.7 The Lamb Shift

 10.8 Rydberg Atoms
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Atomic Structure
 From quantum physics so far:

 If one particle moves in a central potential

V(r) = V(r,θ,φ) = V(r)

then the energy is quantised according to

E = Enℓ

 Here:

n ≥ 1, ℓ ≥ 0

 ℓ specifies the quantised angular momentum2 L2

L2 = ℓ{ℓ+1} ħ2

 m (-ℓ, -ℓ+1,… 0,… ℓ-1, ℓ) specifies the projection Lz of L
on a fixed direction z

Lz = m ħ 
Try to understand above in understanding atoms
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Hydrogen Atom Degeneracies

Energy / {me4 / 32π2ε0
2ħ2} n        ℓ       m     degeneracy

-1                       1        0       0             one

-1/4 2        0       0

-1/4                     2        1        ±1,0 four

-1/9                     3        0       0

-1/9                     3        1        ±1,0        nine

-1/9                     3        2       ±2,±1,0

 Sub-shells within an energy shell are degenerate
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n ℓ Quantum Numbers

 Principal quantum number n is written as a digit

 Angular momentum quantum number ℓ is written as:

ℓ = 0       s ―sharp‖

ℓ = 1        p ―principal‖

ℓ = 2       d ―diffuse‖

ℓ = 3       f ―fundamental‖

ℓ = 4       g

ℓ = 5       h now alphabetical

ℓ = 6        i
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Central Field Approximation

 Neutral atom, atomic number Z

 nucleus + Z electrons in a bound state

 For electron i (i = 1, 2,… Z):

Vi(ri) = -Ze2 / 4πε0ri + ∑ e2 / 4πε0rij

e- - nucleus       e- - e- repulsion

attraction

 Definitely not central !

 Now write:

Vi(ri) = V(ri) + ∆V(ri,rij)              ∆V(ri,rij) small

 Approximate motion of an electron in an atom as that of 
an electron in a central potential and expect only small
corrections ∆V
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Electrons in Atoms

 Each electron contributes an energy Enℓ to the total 
energy of the atom:

E = ∑  Ei,nℓ          summation i = 1,Z

 Electrons in the atom can be specified by their 
configuration in sub-shells:

1s2 2s2 2p2

n = 2, ℓ = 1     2 electrons

n = 2, ℓ = 0     2 electrons

n = 1, ℓ = 0     2 electrons

 And only small corrections need to be made
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10.1 More than Orbital Angular Momentum

 Stern Gerlach experiment: a neutral (∑charge = 0) 
atomic beam passes through a region of non-uniform 
magnetic field

 Beam is split into components !
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Stern Gerlach Experiment

 How is a neutral atomic beam split ?

 Why is a non-uniform magnetic field necessary ?

 Force on a magnetic dipole μ in a region of non-uniform 
field B is:

F = (μ●) B if B was uniform then any 

differential = 0 and hence F = 0

 Atoms in beams must have magnetic dipole moments

 How ?
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Magnetic Dipole Moment

 Atoms are distributions in space of moving charge, i.e. 
current

 Atomic electrons are currents

 Currents interact with field B

 Current loops interact with changes in field B

 Current loops generate magnetic dipole moment

 Consider a current loop of arbitrary 
shape with area A:

 Current I due to flow of n ―lumps‖ per 
unit length of charge q at velocity v:

I = n q v
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Magnetic Dipole Moment

 Length dS contributes to angular momentum L

 If each lump of charge has mass m:

dL = n dS m v r
distance

total mass      velocity  

 The total angular momentum is then given by:

L = n m v s r dS                   dA = ½ r dS

= n m v 2A                          i.e. 2 dA = r dS

 Or, area:

A = L / 2 m n v

 Electromagnetism of current loop of any shape:

magnetic moment:  μ = I A = n q v A
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Magnetic Dipole Moment

 Substituting for A gives:

μ = n q v L / 2 m n v

 Hence:

μ = {q/2m} L
no dependence on n, no dependence on shape of loop

 For atoms the loops of current are distributed 
everywhere, q  -e, m = electron mass

 The relation between total magnetic moment μ and total 
orbital angular momentum L is thus:

μ = -{e/2m} L

 Or:

μ = gℓ {μB/ħ} L where μB = -{eħ/2m}  Bohr        

magneton
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Magnetic Dipole Moment

 Atomic magnetic moments are best quoted in units of the 
Bohr magneton μB

 Note that ―orbital g-factor‖ gℓ = 1

 Back to atomic beam:

 Force in non-uniform field on atoms

F = (μ●) B

 The field is designed so that:

F = (0,0,Fz)

 Then:

Fz = (μ●) B = μz ∂Bz/∂z   if ∂Bz/∂x = ∂Bz/∂y = 0

 Or:

Fz = gℓ {μB/ħ} Lz ∂Bz/∂z 
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Force on Atomic Beam
 The non-uniform magnetic field establishes a direction 

for spatial quantisation:

Lz = mħ                                m = -ℓ, -ℓ+1,… 0,… ℓ-1, ℓ

Fz = {gℓμB ∂Bz/∂z} m

 The (neutral) atomic beam should split into (2ℓ + 1)
components, provided ℓ > 0

 Problem:

F  m

(2ℓ + 1) odd

m = 0   no deflection

 Something is wrong !

BUT: Some beams split into even number of components !
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Solution: Intrinsic Spin

 Uhlenbeck and Goudschmidt proposed that an additional 
contribution to the angular momentum of the atom, and 
therefore the magnetic moment of the atom, arises from 
the intrinsic spin of each electron

 The total angular momentum of the atom is:

J =  L +  S vector addition

total   orbital    spin

 The total magnetic moment of the atom is:

μ = μL + μS vector addition
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Vector Model of Total Angular Momentum

 Orbital angular momentum L and electron intrinsic spin S
are combined to produce total angular momentum J

 Both the L and S vectors precess around the direction of 
the J vector

 The vector J is a constant of the motion
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Angular Momentum Quantum Numbers

 Orbital angular momentum:

L2 = ℓ{ℓ+1} ħ2          ℓ = 0, 1, 2…         integer

 Spatial quantisation:

Lz = m ħ               m = -ℓ, -ℓ+1,… 0,… ℓ-1, ℓ

 Spin:

S2 = s{s+1} ħ2          s = 1/2, 3/2,…      half-integer

 Spatial quantisation:

Sz = ms ħ              ms = -s, -s+1,… 0,… s-1, s

 For one electron:

Spin = ½       

 Hence:

s = ½  and ms = ±½
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Angular Momentum Coupling

 Coupling L and S gives rise to the total angular 
momentum:

J = | L + S |

 Total angular momentum:

J2 = j{j+1} ħ2          j = |ℓ + s|    integer or half-integer

 Spatial quantisation:

Jz = mj ħ              mj = -j, -j+1,… 0,… j-1, j

 We now know that any particle can have a degree of 
freedom called spin (s)

 This spin can be integer or half-integer
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Particles and Spin

 Spin arises because we live in a world in which Einstein‘s 
theory of special relativity holds

The world is Lorentz invariant

 Particles with integer spin are called bosons

Sz = 0ħ, (±ħ, 0), (±2ħ, ±ħ, 0)

 Examples:

some molecules, atoms, nuclei, hadrons, W±, Z0, photons

 Particles with half-integer spin are called fermions

Sz = ±½ħ,…

 Examples:

electrons, quarks, protons, nuclei,…
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Electron Spin

 Electron spin S is a contribution to angular momentum

 It is quantised according to the rules for angular 
momentum:

S2 = s{s+1} ħ2            s = 1/2

Sz = ms ħ ms = ±½

 The electron is a fermion

 Contribution to magnetic moment:

μs = gs {μB/ħ} S gs is spin g-factor

 Dirac:

gs = 2                                  remember gℓ = 1

 Full relativistic theory of quantum physics gives:

gs = 2 + very tiny additions
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Stern Gerlach Experiment & Hydrogen

 H atom ground state:

1s1 1 electron in s subshell with ℓ = 0

 Since it has no orbital angular momentum:

J = | L + S | = S

Jz = Sz = ±½ħ

 Magnetic dipole moment:

μz = gs {μB/ħ} Sz = ±½ gs μB = ±μB               gs = 2

 Force:

Fz = ±μB ∂Bz/∂z

 H atom splits into two components (even) symmetrically 
due only to magnetic moment from electron spin

 Spin ½ of electron confirmed !
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10.2 Electron Spin & Hydrogen Atom

 Exact solution of Schrödinger 
equation for one electron moving 
under the influence of Coulomb 
potential:

V(r) = {-e2 / 4πε0r}

 Accidental degeneracy in ℓ:

ℓ = 0, 1, 2,… (n-1)

En = -13.6 eV / n2

 Orbital angular momentum degeneracy in m:

m = -ℓ, -ℓ+1,… 0,… ℓ-1, ℓ

 And now spin ½ angular momentum degeneracy in ms:

ms = -½, +½

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 274

Hydrogen Atom Degeneracy with Spin

Energy / {me4 / 32π2ε0
2ħ2} n   ℓ   m          ms degen.

-1                       1   0   0    ±½ two

-1/4 2   0   0 ±½

-1/4                     2   1    ±1,0 ±½ eight

-1/9                     3   0   0 ±½

-1/9                     3   1    ±1,0       ±½        eighteen

-1/9                     3   2   ±2,±1,0   ±½

 Spin ½ ―degree of freedom‖ ±½ multiplies degeneracy by 2
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Spin-Orbit Coupling

 The (central) Coulomb potential:

V(r) = {-e2 / 4πε0r}

does not include the effects of the magnetic moments in 
the atom

 There is an interaction between μs due to spin angular 
momentum of electron with μℓ due to the orbital angular 
momentum of the electron

 When fixed in space relative to each other, the energy 
depends only on their relative orientation:

∆E  μs●μℓ

 Here ∆E is the addition (or subtraction) to the total 
energy of the hydrogen atom due to this additional 
interaction
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Spin-Orbit Energy
 Magnetic interaction between μs and μℓ

μs is in magnetic field of μℓ of orbital motion of 
electron

 Spin-orbit interaction energy:
∆E  μs●μℓ   S●L

μs = gs {μB/ħ} S μℓ = gℓ {μB/ħ} L

 The energy ∆E is added to the total energy of the H 
atom from solution of the Schrödinger equation with the 
electron in Coulomb potential function:

V(r) = {-e2 / 4πε0r}
 The energy levels are now:

E = Enℓ + ∆E
 What are the quantum numbers ?
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Spin-Orbit Energy

 Now:

∆E  gsgℓ {μB/ħ}2 S●L

 The total angular momentum of the hydrogen atom is:

J = L + S

 Therefore:

J2 = (L + S)2 = L2 + S2 + 2 S●L

 And so:

S●L = ½(J2 – L2 – S2)

 Hence the energy is:

∆E  ½gsgℓ {μB/ħ}2 (J2 – L2 – S2)

 We can now substitute for J2, L2 and S2
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Spin-Orbit Energy

 From quantum physics:

L2 = ℓ{ℓ+1}ħ2                                                      Lz = m ħ

S2 = s{s+1}ħ2 = ½{½+1}ħ2 = ¾ħ2               Sz = ms ħ = ±½ħ

J2 = j{j+1}ħ2                                                      Jz = mj ħ

 Where: 

ℓ = 0, 1, 2,… 

j integrally spaced ℓ ± ½

 Hence:

∆E  ½gsgℓ {μB/ħ}2 [j(j+1) - ℓ(ℓ+1) - ¾] ħ2

 j(j+1) - ℓ(ℓ+1) - ¾

 Each energy level Enℓ has ∆E, which depends on j and ℓ, 
added to it
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Spin-Orbit Splitting

 The spin-orbit interaction ―lifts‖ 
some of the degeneracy on ℓ of 
H atom energy

 Small shift and splitting of 
energy levels:

E = Enℓ + ∆E  Enℓj

 Notation:

nℓj e.g. 1s1/2, 2p1/2, 2p3/2

 Spectral lines are split:

―Fine structure‖

 Selection rules for transitions:

∆ℓ = ±1,  ∆j = 0, ±1
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Spin-Orbit Splitting: Summary

 Spin-orbit coupling, due to the magnetic interaction of 
the electron spin and orbital angular momenta, gives rise 
to ―fine structure‖ in atomic spectra of hydrogen

 It is ―fine‖ because of the small, magnetic interaction 
between spin and orbital motion

 Full calculations based on relativity and quantum physics 
(Dirac) imply that the spin-orbit interaction and its 
effects are due to special relativity on the electron 
motion

 Final result for the hydrogen atom:

E = Enℓ + ∆E  Enj

still (accidental) degeneracy on ℓ
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Example: H Atom s and p States

 Solution of Schrödinger equation with:

V(r) = {-e2 / 4πε0r}

yields energies:

E = Enℓ

with accidental degeneracy on ℓ

e.g. E3s = E3p = E3d

 Total angular momentum quantum number j specified by:

j = ℓ + s

e.g.   3s1/2 3p1/2,3/2 3d3/2,5/2

|0 + ½|      |1 + ½|          |2 + ½|

 Small interaction, spin-orbit coupling:

E = Enℓ  Enj
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H Atom Fine Structure

1s

2p
2s

n=1

n=2

1s1/2

2s1/2 2p1/2

2p3/2

ℓ = 0
s = 1/2
j = 1/2

ℓ = 0, ℓ = 1
s = 1/2
j = 1/2,  3/2

ℓ = 0, j = 1/2

ℓ = 1, j = 3/2

ℓ = 0, ℓ = 1
j = 1/2

1 spectral line ―doublet‖ line
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H Atom Fine Structure
Electron in 

Coulomb potential

Accidental degeneracy in ℓ

Degeneracy in m

and ms = ±½

Transition: 2p  1s

1 line

―singlet‖

spin-orbit interaction of 

electron

Accidental degeneracy in ℓ

Degeneracy in mj

and mj = mℓ ± ½

Transitions: 2p1/2  1s1/2

2p3/2  1s1/2

―doublet‖

+
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H Atom Degeneracy: Spin + L●S Coupling

Energy / {me4 / 32π2ε0
2ħ2} n    j     ℓ   mj degen.  label

-1  + ―s●ℓ‖           1   1/2 0   ±1/2 2 1s1/2

-1/4 + ―s●ℓ‖           2   1/2 0 ±1/2 2s1/2

-1/4 + ―s●ℓ‖           2   1/2 1 ±1/2 2p1/2

-1/4 + ―s●ℓ‖           2   3/2 1 ±3/2, ±1/2 4 2p3/2

-1/9 + ―s●ℓ‖           3   1/2 0 ±1/2 3s1/2

-1/9 + ―s●ℓ‖           3   1/2 1 ±1/2 3p1/2

-1/9 + ―s●ℓ‖           3   3/2 1 ±3/2,±1/2 3p3/2

-1/9 + ―s●ℓ‖           3   3/2 2 ±3/2,±1/2 3d3/2

-1/9 + ―s●ℓ‖           3   5/2 2 ±5/2, ±3/2, ±1/2 6 3d5/2

4

4

8
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Fine Structure Constant 

 The energies of the (fine structure) of the hydrogen 
atom may be expressed as:

E = -{me4 / 32π2ε0
2ħ2} {1/n2} [ 1 + 2/n ( 1/{j + ½} – 3/4n ) ]

which defines the ―fine structure constant‖ : 

 = e2 / ħc 

 Its value is: 

 ~ 1/137
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10.3 Many-Electron Atoms

 In the central field approximation, each electron 
contributes an energy Enℓ where n is the principal quantum 
number and ℓ is the orbital angular momentum quantum 
number

The quantum numbers n, ℓ specify an ―energy sub-
shell‖

 In an atom with more than one electron, the minimum 
energy of the atom (ground state) would have all 
electrons in the lowest energy sub-shell: n = 1, ℓ = 0: 1s

 This is not consistent with observation

E.g. zero orbital angular momentum of each electron 
and therefore also of atom  Stern-Gerlach splitting 
of 2 only !
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Pauli Exclusion Principle

 In a many-electron system, only one electron may be 
assigned to one quantum state

Quantum state = one (unique) set of quantum numbers

= one (unique) wave function

 ―Only one electron‖: probability density for two or more 
electrons is zero

 Pauli principle is fundamental

It arises in the quantum field theory of particles 
where there is a distinction between half-integer 
particles (fermions) and integer spin particles  
(bosons)

Proof is not straightforward !
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Identical Particles

 Identical particles cannot be distinguished by means of 
any intrinsic properties

 This can lead to effects that have no classical analogue

 Two particles are identical if there are no interactions
that can distinguish them

A physical observable must be symmetric with respect 
to the interchange of any pair of particles
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Bosons and Fermions

 The time-dependent Schrödinger equation for two 
identical particles is:

{iħ ∂/∂t} (r1, r2) = H (r1, r2) (r1, r2) 

 As

H (r1, r2) = H (r2, r1) 

there are two fundamentally different kinds of solution:

(r1, r2) = (r2, r1)             symmetric boson

and

(r1, r2) = -(r2, r1)           antisymmetric fermion
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Fermions and Bosons

 Two identical fermions (e.g. two electrons with the same 
spin orientation) cannot occupy the same point in space, 
nor can they have the same value of momentum

 Pauli Exclusion Principle

 Each fermion has a unique set of quantum numbers

 Two non-interacting bosons can occupy the same point in 
space, or they can have the same value of momentum

 Boson condensation

 Bosons can all occupy the same (ground) state

Bose-Einstein Condensate

 High temperature T

Billiard balls

Thermal velocity v, density d-3

 Low temperature T

Wave packets

De Broglie wavelength λ  T-1/2

 Critical Temperature T = Tcrit

Matter wave overlap

De Broglie wavelength λ ~ d

 T = 0, Bose Condensate

Giant matter wave
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Many-Electron Atoms

 Many-electron wave function:

Each of the Z atomic electrons moves in the same 
potential V(r)

All other interactions are small

 The quantum states are labelled by:

n principal quantum number

ℓ orbital angular momentum quantum number

m spatial quantisation quantum number

s = ½ spin angular momentum quantum number

ms = ± ½ spatial quantisation quantum number

assigned to each electron
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The Elements

The number of protons (or electrons) defines an element
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Electron Configurations

Electron configuration: 
(inert) closed-shell core + valence electrons
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(Valence) Electron Configurations

Electron configuration: 
(inert) closed-shell core + valence electrons
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Many-Electron Atoms

 Considering two electrons in quantum states (1) and (2), 
we can write the overall wave function:

 = 1
(1)
2

(2)

 However this includes the possibility of ―identical states‖, 
i.e. (1) = (2):

 = 1
(1)
2

(1)   so ||2 ≠ 0   violates Pauli principle

 If the wave function of two electrons is written:
 = {1/√2} [ 1

(1)
2

(2) - 1
(2)
2

(1) ]
then if (1) = (2):

 = 0 and ||2 = 0   does not violates Pauli principle

 Deeper statement of Pauli principle:
Wave function of a many-electron (fermion) system 

must be antisymmetric (  -) when any two 
electrons are interchanged
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Many-Electron Atom in Central Field

 Atom with Z electrons:

 Each electron is assigned to a single wave function 
specified by a unique combination of the following 
quantum numbers:

n          ℓ          m           s = ½            ms = ±½

 Sub-shells are filled in order of increasing energy 
following the Pauli principle

 Energy of atom = sum of energies of each electron 
(specified by sub-shell)

 ‗Capacity‘ of sub-shell   =   2 (2ℓ + 1)

Pauli principle      ms = ±½      allowed values of m
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Electron Configurations

Sub-shell filling Electron configurations
spin up, spin down

closed shell (n=2)

closed shell (n=1)
1 valence ‗particle‘

1 valence ‗hole‘

sub-shell
filling
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Shell Structure (Magic Numbers)

 Full shells more bound

highest ionisation energy

smallest atomic radius

 Full shell + 1

least bound

largest atomic radius

 Closed shells define a set 
of magic numbers

2 10 18 36 54 86…
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Closed (Full) Electron Shells

 A full (n,ℓ) sub-shell of 2(2ℓ + 1) electrons:

contributes to the energy of the atom

has each quantum state, wave function, assigned to an 
electron

Total Lz = 0 given by total sum of all m

Total   Sz = 0   given by total sum of all ms

Total Jz = 0 given by total sum of all mj

 Hence it follows that a full sub-shell contributes zero 
to the (total angular momentum)2 (J2) and its projection 
Jz = mzħ of the atom

 There is also no contribution to the magnetic dipole
moment
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Partially Filled Electron Shells

 Partially filled sub-shell(s) 
contribute to the total angular 
momentum of an atom

 J, mj not necessarily zero

 empty states accessible (to  

electrons if atom excited)

 Spectroscopy of many-electron atoms is determined 
by ―optically active‖ electrons in partially filled sub-
shells

 Structure of spectroscopy from sub-shells
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Ground State of Fe (Z=26)

 Large magnetic moment (iron !)

 Sub-shell ordering can change 
from atom to atom

more electrons change central 
field approximation

 Optical spectroscopy (∆E ≤ few
eV) specified by ―outer‖ unfilled 
sub-shells and optically active 
electrons

 Inner sub-shell electrons have 
binding energies ~ keV

X ray active

 Optically active electrons are in the 3d sub-shell
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10.4 Fine Structure in Optical Spectroscopy

 Central field approximation: 

 1 optically active electron de-excites 
releasing a photon of energy:

E = E3s – E2p

 Example: 6C

ground state  : 1s2 2s2 2p2                             (capacity 2 2 6)

excited state : 1s2 2s2 2p1 3s1                     (capacity 2 2 6 2)

closed    optically active

 Fine structure is observed: ―splitting of energy levels‖

Energy of atom = energy assuming central field 
approximation + small corrections (residual 
interactions)
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Fine Structure
 Residual interactions are ignored in the central field 

approximation

 remaining non-central pieces of fields experienced by 

each atom

 spin-orbit interactions (magnetic  S●L)

 Configurations of electrons in partially filled sub-shells 
with different total spin S, total orbital angular 
momentum L, and total angular momentum J have 
different energies

 Full sub-shells, with only J = 0 contribution to atom have 
energies shifted
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Total Spin of Atomic Configurations
 The total spin S of an atomic 

configuration is given by the vector 
sum of all optically active electrons:

S = |∑½|

 The total orbital angular momentum L
of an atomic configuration is given by 
the vector sum of all optically active 
electrons:

L = |∑ℓ|

 The total angular momentum J of an 
atomic configuration is given by the 
vector sum:

J = |L + S|

e.g. 3 electrons

e.g. 2p2 electrons
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Carbon Ground State

 2 valence electrons (s = ½): 

S = 0 requires electrons in different
ms states, antisymmetric under 
interchange of electrons

S = 1 can have electrons in same ms

state, symmetric under interchange

 2 electrons in 2p subshell (ℓ = 1):

L = 0 symmetric under exchange

L = 1 antisymmetric under exchange

L = 2 symmetric under exchange

 6C    ground state  : 1s2 2s2 2p2                 (capacity 2 2 6)
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 We require overall antisymmetry under exchange

 (n,ℓ) sub-shell same for both electrons   symmetric

 Total spin J = |L + S|:

J = |0 + 0|       |2 + 0|      |1 + 1|

sym. anti. sym. anti. anti. sym.

1S0
1D2

3P2
3P1

3P0

highest energy               lowest energy

 Fine structure spectroscopic notation:           2S+1LJ

 Each with different energy:

Largest S lowest energy           residual electrostatic

Then largest L lowest energy    interactions         

Then smallest J lowest energy  spin-orbit

Carbon Ground State

Hund‘s
Rules
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 6C  excited state : 1s2 2s2 2p1 3s1              (capacity 2 2 6 2)

 2 electrons:  S = 0, S = 1                                    

 1 electron in p subshell ℓ = 1

 1 electron in s subshell ℓ = 0

 n quantum numbers different  (Pauli OK) antisymmetric

 States  J = |L + S|:

J = |1 + 0|               |1 + 1|
1P1

3P2
3P1

3P0                       
2S+1LJ

highest energy       lowest energy

 So what transitions are possible ?

Carbon Excited State

L = 1 
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Carbon Fine Structure

 One line (transition) 
becomes six !

 There are single lines 
for:

 ∆L = ±1

 ∆J = 0, ±1

 Other examples in other 
atoms can be more or 
can be less complicated

2p2

2p3s
1P1

3P2
3P1
3P0

1S0

1D2

3P2

3P1

3P0

re
si
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L
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Electron Configurations: Summary

 Single electron (hydrogen atom level energies)
Couple ℓ and s to produce j

 Labels:
n ℓ j e.g. 1s1/2 ground state

 Multi electron configurations
1 Split into inert core (filled shells) plus outer (valence) 

electrons
2 Couple the ℓ values to produce L
3 Couple the s values to produce S
4 Couple L and S to produce J               (fermion asymmetry)

 Labels:
2S+1LJ e.g.  3P1
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10.5 Zeeman Effect
 Atomic spectra change when subjected to an applied 

magnetic field

 Fine structure splits into (yet more !) lines
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Zeeman Effect

 The magnetic moment of the atom interacts with the 
applied magnetic field:

Eatom = Ecentral field approx + Eresidual + ∆Eapplied magnetic field

 The interaction energy is:

∆E = -μ●B

 With:

μ = gj {μB/ħ} J

 Where:

μB is the Bohr magneton

gj is the Landé g factor which depends on the atomic  

state (cf spin g factor of electron)

gj = 1 + { [(j(j+1) + s(s+1) - ℓ(ℓ+1)] / 2j(j+1) }
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Angular Momentum in a Magnetic Field

 Recall that the L and S vectors precess about the 
direction of the J vector

 Now the J vector precesses around the direction of the 
B field

 Now mj is the constant of motion
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Interaction Energy

 For an atom in configuration 2S+1LJ :

∆E = gj  {μB/ħ} B Jz

when the uniform magnetic field is applied along the z

axis (spatial quantisation axis)

 Now:

Jz = mjħ

 Hence:

∆E = gj μB B mj

 Splitting of energy level given by mj (similar but not 
identical with Stern Gerlach experiment)

 proportional to B

 depends on detailed atomic configuration (gj)
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Zeeman Effect in Carbon

2p2

2p3s

mj

1P1

3P2

3P1
3P0

1S0

1D2

3P2

3P1
3P0

central field    fine structure                   Zeeman
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Zeeman Effect: Selection Rules

 Transitions with:

∆L = ±1

∆J = 0, ±1

are now split according to:

∆mj = 0, ±1

leading to many different transitions !

 Note that if the applied magnetic field is large, i.e. much 
greater than the spin-orbit interaction, then the splitting 
can be different (Paschen-Back effect)
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Zeeman Effect in Sodium

B field

Fine structure

 Sodium has 11 electrons (closed shell + 1 extra electron)

11Na    ground state  : 1s2 2s2 2p6 3s1

11Na excited state  : 1s2 2s2 2p6 3p1
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Paschen-Back Effect (Strong Field)

 The Zeeman splitting changes form in a strong magnetic 
field: the Paschen-Back Effect

 The field is strong enough disrupt the coupling between 
orbital L and spin S angular momenta



81

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 321

Paschen-Back Effect

 Weak field (left):

The vectors L and S couple to form J which precesses 
around the direction of the magnetic field B

 Strong field (right):

The vectors L and S couple more strongly to the 
external field B rather than each other

Increasing B
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10.6 Hyperfine Structure

 Yet more (very small) splitting of atomic transitions !

 Just as electrons in motion give rise to an atomic
magnetic dipole moment, protons in motion give rise to a 
nuclear dipole magnetic moment

μ = gI {μN/ħ} I where μN = {eħ/2mp}        Nuclear        

magneton

 Note that:    μN = μB / 1836        ratio of proton and e- masses

 The proton dipole moment will interact with both the spin
dipole moment of the electron and the orbital dipole
moment of the electron
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Proton and Neutron g Factors

 Consider orbital ℓ and intrinsic s angular momenta of the 
proton and neutron

 The orbital motion of the charged proton gives rise to a 
magnetic dipole moment and hence:

gℓ (proton) = 1

 The neutron is uncharged and hence:

gℓ (neutron) = 0

 Since the proton and neutron are composite objects, they 
have:

gs (proton) ≈ 5.56 and   gs (neutron) ≈ -3.83 (!)

 Thus the intrinsic spin of the uncharged neutron can give 
magnetic effects !

Recall   gℓ (electron) = 1 and  gs (electron) ≈ 2.00
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Hyperfine Interaction
 The nuclear spin I (made up of orbital and intrinsic spins 

of the neutrons and protons)  couples with the electron 
spin J (again made up of orbital and intrinsic spin) to give 
total spin F:

F = J + I
 The magnitude of F is:

|F| = √{F(F+1)} ħ

 The quantum number F can take the values:
F = J+I, J+I-1, …, J-I

 There are:
(J+I) - |J-I| + 1 

distinct components
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Hyperfine Interaction
 The interaction energy between the nuclear magnetic 

moment and the magnetic field produced by the electron
angular momentum is given by:

EHF = -μI●BJ   =  {a/2} [F(F+1) – I(I+1) – J(J+1)]

where:

a = {gI μN BJ} / √{J(J+1)}

 Hyperfine energy shifts are of the order:

{me / mp} 2 En          fine structure constant

 Measurement of the hyperfine structure of atomic 
transitions can yield the nuclear spin I if J is known                
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Isotope Shift & Hyperfine Structure
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Hyperfine Transition of Hydrogen

 The photon corresponding to this transition has:

 = 1420.4057517667(10) MHz

 = 21.1 cm

which is in the range of radio frequencies

 This is the source of the famous 21 cm line which is 
extremely useful to radio astronomers for tracking 
hydrogen in the interstellar medium of galaxies

 For the ground state of hydrogen 
the hyperfine splitting between the 
F=1 and F=0 states is

ΔEHF = 5.9 x 10-6 eV
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Hydrogen in the Universe

Stellar light distribution              H 21 cm distribution

The Ring Nebula
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Visible Light                               21 cm Radiofrequency
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Hyperfine Structure in an External 
Magnetic Field

 In a weak magnetic field the shift of the atomic energy 
levels due to hyperfine splitting is:

ΔEHF = gF μB B mF

with:

gF = gJ [ {F(F+1) + J(J+1) – I(I+1)} / {2F(F+1)} ]

- gI {μN / μB} [ {F(F+1) + I(I+1) – J(J+1)} / {2F(F+1)} ]

 We can neglect the second term since μN = μB / 1836

 The levels are split into 2F+1 equidistant components
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The Second & The Metre
 Hyperfine structure transitions are used to make very 

precise atomic clocks, usually with caesium or rubidium 
atoms

 One second is now defined to be exactly 9,192,631,770
cycles of the hyperfine structure transition frequency of 
caesium-133 atoms

 Since 1983 the metre is defined by declaring the speed 
of light in a vacuum to be exactly 299,792,458 m s-1

 The metre is the length of the path travelled by light in 
vacuum during a time interval of 1 / 299,792,458 s
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10.7 The Lamb Shift 

 According to Schrödinger theory, electron states in the 
hydrogen atom with the same n and j quantum numbers 
ought to be degenerate (Enj), 

e.g.    2s1/2 and 2p1/2 levels

 However a small energy shift is found, similar in size to 
the hyperfine structure

 This is known as the Lamb Shift
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H Atom Fine Structure (revisited)

1s

2p
2s

n=1

n=2

1s1/2

2s1/2 2p1/2

2p3/2

ℓ = 0, s = ½, j = 1/2

ℓ = 0, ℓ = 1
s = 1/2
j = 1/2,  3/2

ℓ = 0, j = 1/2

ℓ = 1, j = 3/2

ℓ = 0, ℓ = 1
j = 1/2

1 spectral line ―doublet‖ line

 According to Schrödinger theory, the 2s1/2 and 2p1/2 

levels in hydrogen should be degenerate
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The Lamb Shift

 A very small difference in the energies of the 2s1/2 and 
2p1/2 states in hydrogen exists, even smaller than the 
hyperfine structure, and corresponds to a frequency of 
1.06 GHz    
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The Electron g Factor

 The Lamb shift provided a high precision verification of 
theoretical calculations made with the quantum theory of 
electrodynamics (QED)

 These calculations predict that electrons continually 
exchange photons, this being the mechanism by which the 
electromagnetic force acts

 The effect is to smear out the electron‘s position slightly 
and perturbs the electron g factor from its expected 
value of 2
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Quantum Electrodynamics (QED)

 QED can be used to calculate the electron g factor with 
great precision:

g = 2.002319304386

 This value agrees to many decimal places with the value 
obtained from the tiny Lamb shift

 Triumph for QED !
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10.8 Rydberg Atoms

 A Rydberg Atom is an excited atom with one or more of 
its electrons that have a very high principal quantum 
number n

 These atoms have a number of peculiar properties: 

 exaggerated response to electric and magnetic fields

 long decay periods

 electron wave-functions that approximate classical  

orbits of electrons about the nucleus
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Rydberg Atoms

 Bohr's expression for the orbital radius r in terms of the 
principal quantum number n is 

r = a0 n2 where a0 = 0.053 nm is the Bohr radius

 For the n = 137 state in hydrogen, the atomic radius is

r = 1 μm      !

 Thus Rydberg atoms are extremely large with loosely 
bound valence electrons, easily perturbed or ionised by 
collisions or external fields
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