

Where is the Electron ?			
➢ Electron ψ ² =	Electron probability density: ur ² = RY ²		
Probability of finding the electron in a small region of the atom volume:			
$r^2 dr d\Omega = r^2 dr d(\cos\theta) d\phi$ $\Omega = solid angle$			
is:			
R _{nl} (r	r) $Y_{\ell m}(\Theta, \varphi) ^2 r^2 dr d\Omega$		
$= \mathbf{r} \mathbf{R}_{\mu}(\mathbf{r}) ^2 \mathbf{Y}_{\mu}(\mathbf{\theta}, \boldsymbol{\omega}) ^2 \mathrm{d}\mathbf{r} \mathrm{d}\boldsymbol{\Omega}$			
=	$ \chi_{n\ell}(r) ^2 Y_{\ell m}(\theta, \phi) ^2 dr d\Omega$		
≻ Ask a ma	thematician!		
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	204	

Angular Dependence				
> Spherical harmonics Y _{em} :				
$Y_{00} = \int \{1/4\pi\}$	ψ ² isotropic			
Y ₁₁ = -√{3/8π} sin{θ} exp{iφ}	ψ ² ∝ sin²{θ}			
$Y_{10} = \sqrt{3/4\pi} \cos\{\Theta\}$	ψ ² ∝ cos²{θ}			
$Y_{1-1} = \sqrt{3/8\pi} \sin\{\Theta\} \exp\{-i\varphi\} \qquad \psi ^2 \propto \sin^2\{\Theta\}$				
$Y_{22} = \sqrt{\{15/32\pi\} \sin^2\{\Theta\} \exp\{2i\phi\}}$ $ \psi ^2 \propto \sin^4\{\Theta\}$				
$Y_{21} = -\sqrt{\frac{15}{8\pi}} \sin\{\Theta\} \cos\{\Theta\} \exp\{i\phi\} \psi ^2 \propto \sin^2\{\Theta\}\cos^2\{\Theta\}$				
$Y_{20} = \sqrt{5/16π} \{3cos^2{θ} - 1\}$ ψ ² ∝ (3cos ² {θ} - 1) ²				
> In general Y_{ℓ_m} :				
has φ dependence exp{imφ}				
≻ has polynomials in sin/cos{0} to a	order l			
07/09/2011 PHYS255: Quantum & Atomic Physic:	s - E.S. Paul 209			

Summary: Hydrogen Atom	
 > Electron moving under influence of central potential: V(r) = {-e² / 4πε₀r} > Energy quantisation: E_n = {-me⁴/8ε₀²h²} {1/n²} = -Rhc/n² = -13.6 eV / n² > Accidental degeneracy on f : 	
$\ell = 0, 1, 2, n-1$ > Degeneracy on m: m = - ℓ_1 - $\ell + 1, 0, \ell - 1, \ell$	
 Photon emitted/absorbed for Δℓ = ±1 selection rule Electron wave function: ψ_{nℓm} = R_{nℓ}(r) Y_{ℓm}(θ,φ) 	
07/09/2011 PHY 5255: Quantum & Atomic Physics - E.S. Paul	211

Scatte	ering: What is Measured ?	
 Incident part Probability momentum 	t <mark>icle:</mark> y that it is scattered with a given energy, 1	
 Incident part Flux that i momentum 	t <mark>icle flux:</mark> it is scattered with a given energy, n	
Flux is define across unit period	e <mark>d as the</mark> number <mark>of particles</mark> per unit time erpendicular area	2
Wł	nat is this in quantum physics ?	
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	216

Quantum Scattering		
Using the free particle solution: \$\psi\$ = A exp{ikx} + B exp{-ikx}		
Probability current density is <u>conserved</u>		
It has a component (in the +ve x direction of): +p/m A ²		
It has a component (in the -ve x direction of): -p/m B ²		
> Quantum equivalent to classical conservation o	f <u>flux</u>	
07/09/2011 PHVS255: Quantum & Atomic Physics - E.S. Paul	220	

	_		
	Potential Barrier		
➤ Continuity	of w at x = -a/2 :		
A1 ex	$xp{-ika/2} + B_1 exp{ika/2}$		
-	$= A_2 \exp\{\alpha \alpha/2\} + B_2 \exp\{-\alpha \alpha/2\}$		
➤ Continuity	of ψ at x = a/2 :		
$A_3 \exp\{ika/2\} = A_2 \exp\{-\alpha a/2\} + B_2 \exp\{\alpha a/2\}$			
Continuity of d\u00fc/dx at x = -a/2 :			
ik[A ₁ exp{-ika/2} - B ₁ exp{ika/2}]			
$= \alpha [-A_2 \exp{\alpha \alpha/2} + B_2 \exp{-\alpha \alpha/2}]$			
Continuity of d\u00cf/dx at x = a/2 :			
$ikA_3 \exp{-ika/2} = \alpha [-A_2 \exp{-\alpha a/2} + B_2 \exp{\alpha a/2}]$		αa/2}]	
Four	equations, five unknowns		
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	236	

07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	246

Attractive Potential Well			
 After some tiresome algebra: A₃/A₁ = -4kk₀ exp{-ika} / [(k - k₀)² exp{ik₀a} - (k + k₀)² exp{-ik₀a}] which can also be written: A₃/A₁ = -4kk₀ exp{-ika} / [2(k² - k₀²)² i sin{k₀a} - 4kk₀ cos{k₀a}] Transmissivity T : T = k A 2 / k A 2 			
$= 4k^{2}k_{0}^{2} / [4k^{2}k_{0}^{2} \cos^{2}\{k_{0}a\} + (k^{2} + k_{0}^{2})^{2} \sin^{2}\{k_{0}a\}]$			
= $1/[1 + x \sin^{2}(k_{0}a)]$ $x = (k^{2} - k_{0}c)^{2} / 4k^{2}k_{0}c^{2}$ > Maximum T when: $sin(k_{0}a) = 0$			
$\therefore k_0 a = n \lambda_0 / 2$	$= 2\pi a / \lambda_0 = n\pi$ 2 = a	n integer	
Maximum the width	when integer number of h of the well	nalf wavelengths <mark>equals</mark>	
07/09/2011	PHYS255: Quantum & Atomic Physic	cs - E.S. Paul 248	

Hydrogen At	om [)ege	eneraci	es	
Energy / {me ⁴ / $32\pi^2\epsilon_0^2\hbar^2$ }	n	ł	m degeneracy		
-1	1	0	0	one	
-1/4	2	0	0		
-1/4	2	1	±1,0	four	
-1/9	3	0	0		
-1/9	3	1	±1,0	nine	
-1/9	3	2	±2,±1,0		
> Sub-shells within an ener	gy she	ll are	<u>degenera</u>	<u>te</u>	
07/09/2011 PHY5255: Quantur	n & Atomic	Physics -	E.S. Paul		25

Atomic Structure	
From quantum physics so far:	
> If one particle moves in a central potential	
$V(\underline{r}) = V(r,\theta,\phi) = V(r)$	
then the energy is quantised according to	
E = E _{nl}	
≻ Here:	
n ≥ 1, ℓ ≥ 0	
E specifies the quantised angular momentum ² L ²	
$L^2 = \ell \{\ell + 1\} \hbar^2$	
m (-l, -l+1, 0, l-1, l) specifies the projection L _z of L on a fixed direction z	
L _z = m ħ	
Try to understand above in understanding atoms	
07/09/2011 PHY S255: Quantum & Atomic Physics - E.S. Paul 25	54

n l Quantum Numbers			
> Principal qu	iantu	m number n is written as a digit	
> Angular mo	ment	rum quantum number 🕻 is written as:	
ℓ = 0	S	"sharp"	
ℓ = 1	р	"principal"	
ℓ = 2	d	"diffuse"	
ℓ = 3	f	"fundamental"	
£ = 4 £ = 5 £ = 6	g h i	} now alphabetical	
07/09/2011	PH	YS255: Quantum & Atomic Physics - E.S. Paul	256

Angular Momentum Coupling
Coupling <u>L</u> and <u>S</u> gives rise to the total angular momentum:
J = <u>L</u> + <u>S</u>
> Total angular momentum:
$J^2 = j\{j+1\}\hbar^2$ $j = \ell + s $ integer or half-integer
Spatial quantisation:
$J_z = m_j \hbar$ $m_j = -j, -j+1,, 0,, j-1, j$
We now know that any particle can have a degree of freedom called <u>spin</u> (s)
This spin can be integer or half-integer
07/09/2011 PHY5255: Quantum & Atomic Physics - E.S. Paul 265

Stern Gerlach Experiment & Hydrogen				
➤ H atom ground state:				
$1s^1$ 1 electron in s subshell with $\ell = 0$				
Since it has no orbital angular momentum:				
$J = \underline{L} + \underline{S} = S$				
$J_z = S_z = \pm \frac{1}{2}\hbar$				
> Magnetic dipole moment:				
$\mu_z = g_s \{\mu_B/\hbar\} S_z = \pm \frac{1}{2} g_s \mu_B = \pm \mu_B \qquad g_s = 2$				
> Force:				
$F_z = \pm \mu_B \partial B_z / \partial z$				
 H atom splits into two components (even) symmetrically due <u>only</u> to magnetic moment from electron spin Spin ¹/₂ of electron confirmed ! 				
07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 272				

Hydrogen Atom Degeneracy with Spin					
Energy / {me ⁴ / $32\pi^2\epsilon_0^2\hbar^2$ }	n	ł	m	m _s	degen.
-1	1	0	0	±ż	two
-1/4	2	0	0	$\pm \frac{1}{2}$	
-1/4	2	1	±1,0	$\pm \frac{1}{2}$	eight
-1/9	3	0	0	+ 1	
-1/9	3	1	±1,0	$\frac{1}{2}$	eighteen
-1/9	3	2	±2,±1,0	$\pm \frac{1}{2}$	
➢ Spin ½ "degree of freedo	om"	± 1/2	multiplie	es dege	neracy by 2
07/09/2011 PHY5255: Quantur	n & A	tomic	Physics - E.S.	Paul	274

	Spin-Orbit Coupling				
> The (central) Coulomb potential:					
	$V(r) = \{-e^2 / 4\pi\epsilon_0 r\}$				
does <u>not</u> the atom	include the effects of the magnetic moments	in			
There is momentu momentu	an interaction between $\underline{\mu}_s$ due to spin angular im of electron with $\underline{\mu}_\ell$ due to the orbital angular im of the electron	ır			
When fix depends	ked in space relative to each other, the energy only on their relative orientation:	/			
	$\Delta E \propto \mu_s \cdot \mu_r$				
≻ Here ∆E energy of interaction	is the addition (or subtraction) to the total f the hydrogen atom due to this additional on				
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	275			

Spin-Orbit Energy				
 Magnetic interaction between μ_s and μ_l μ_s is in magnetic field of μ_l of orbital motion of electron 				
Spin-orbit interaction energy:				
$\Delta E \propto \underline{\mu}_{s} \bullet \underline{\mu}_{\ell} \propto \underline{S} \bullet \underline{L}$				
$\underline{\mu}_{s} = \underline{g}_{s} \{ \mu_{B} / \hbar \} \underline{S} \qquad \underline{\mu}_{\ell} = \underline{g}_{\ell} \{ \mu_{B} / \hbar \} \underline{L}$				
 The energy ΔE is added to the total energy of the H atom from solution of the Schrödinger equation with the electron in Coulomb potential function: V(r) = {-e² / 4πε₀r} The energy levels are now: E = E_n + ΔE What are the guantum numbers ? 				
07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 276				

Spin-Orbit Energy					
> From quantum physics:					
L² = ୧{୧+1}ħ²	L _z = m ħ				
$S^2 = s\{s+1\}\hbar^2 = \frac{1}{2}\{\frac{1}{2}+1\}\hbar^2 = \frac{3}{4}\hbar^2$	$S_z = m_s \hbar = \pm \frac{1}{2}\hbar$				
$J^2 = j\{j+1\}\hbar^2$	$J_z = m_i \hbar$				
> Where:	J				
ℓ = 0, 1, 2,					
j integrally spaced { ± ½					
> Hence:					
$\Delta E \propto \frac{1}{2} g_s g_{\ell} \{ \mu_{B} / \hbar \}^{2} [j(j+1) - \ell(\ell+1) - \frac{3}{4}] \hbar^{2}$					
∝ $j(j+1) - \ell(\ell+1) - \frac{3}{4}$					
≻ Each energy level E _{nℓ} has ΔE, which depends on j and ℓ, added to it					
07/09/2011 PHYS255: Quantum & Atomic Physics - E.S.	Paul 278				

Example: H Atom s and p States					
> Solution of S	chrödinger equation with:				
	$V(r) = \{-e^2 / 4\pi\epsilon_0 r\}$				
yields energ	ies:				
	E = E _{nt}				
with acciden	ital degeneracy on t				
	e.g. $E_{3s} = E_{3p} = E_{3d}$				
> Total angular momentum quantum number j specified by:					
	j = <u>l</u> + <u>s</u>				
	e.g. 3s _{1/2} 3p _{1/2,3/2} 3d _{3/2,5/2}				
$ \underline{0} + \frac{1}{2} $ $ \underline{1} + \frac{1}{2} $ $ \underline{2} + \frac{1}{2} $					
Small interaction, spin-orbit coupling:					
	$E = E_{n\ell} \to E_{nj}$				
07/09/2011	PHY5255: Quantum & Atomic Physics - E.S. Paul	281			

H Atom Fine Structure					
Electron in Coulomb potential	spin-orbit interaction of electron				
Accidental degeneracy in {	Accidental degeneracy in ł				
Degeneracy in m and $m_s = \pm \frac{1}{2}$	Degeneracy in m_j and $m_j = m_\ell \pm \frac{1}{2}$				
Transition: 2p → 1s 1 line	Transitions: $2p_{1/2} \Rightarrow 1s_{1/2}$ $2p_{3/2} \Rightarrow 1s_{1/2}$				
"singlet"	"doublet"				
07/09/2011 PHY 5255: Quantum 6	& Atomic Physics - E.S. Paul 283				

F rance / (ma4 / 22=2a 2t 2)	5	;	ر		dee	~ ~	, J
Energy 7 {me ⁺ / $32\pi^2\epsilon_0^2n^2$ }	n	J	t	mj	deg	en.	ladel
-1 + "S∙ť"	1	1/2	0	±1/2		2	1s _{1/2}
-1/4 + "s•l"	2	1/2	0	±1/2	l	Δ	2s _{1/2}
-1/4 + "s•{″	2	1/2	1	±1/2	ſ	7	2p _{1/2}
-1/4 + "s•{"	2	3/2	1	±3/2, ±1/2		4	2p _{3/2}
-1/9 + "s• { "	3	1/2	0	±1/2	ſ	٨	3s _{1/2}
-1/9 + "s • { "	3	1/2	1	±1/2	ſ	4	3p _{1/2}
-1/9 + "S∙{"	3	3/2	1	±3/2,±1/2	Ĵ	8	3p _{3/2}
-1/9 + "S•{"	3	3/2	2	±3/2,±1/2	J	Ŭ	3d _{3/2}
-1/9 + "s•ł"	3	5/2	2	±5/2,±3/2,	±1/2	6	$3d_{5/2}$
07/09/2011 PHYS255: G)uant	um & Ato	omic F	Physics - E.S. Paul			284

1	.0.3 Many-Electron Atoms	
In the ce contribut number a number	ntral field approximation, each electron res an energy $E_{n\ell}$ where n is the principal quant nd ℓ is the orbital angular momentum quantum	tum
≻ The qu shell"	uantum numbers n, ł specify an "energy sub-	
 In an ato energy of electrons 	m with more than one electron, the minimum ⁵ the atom (ground state) would have all 3 in the lowest energy sub-shell: n = 1, { = 0: 1s	
➤ This is no	t consistent with observation	
≻E.g. ze and th of 2 oi	ro orbital angular momentum of each electror erefore also of atom → Stern-Gerlach splittir nly !	ı Ig
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	287

Identical Particles	
 Identical particles cannot be distinguished ta any intrinsic properties 	by means of
> This can lead to effects that have no classic	cal analogue
Two particles are identical if there are no ir that can distinguish them	nteractions
A physical observable <u>must</u> be symmetric to the interchange of any pair of particle	with respect
07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul	289

Carbon Excited State			
▹ 6 ^C excited state : 1s ² 2s ² 2p ¹ 3s ¹	(capacity <mark>2 2 6 2</mark>)		
 2 electrons: S = 0, S = 1 1 electron in p subshell l = 1 1 electron in s subshell l = 0 			
 n quantum numbers different (Pauli OK) > States J = L + S : 	antisymmetric		
$J = \underline{1} + \underline{0} \qquad \underline{1} + \underline{1} $ ${}^{1}P_{1} \qquad {}^{3}P_{2} {}^{3}P_{1} {}^{3}P_{0}$ highest energy lowest energy	25+1LJ		
> So what transitions are possible ?			
07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Pc	ul 310		

Electron Configurations: Summary
 Single electron (hydrogen atom level energies) Couple l and s to produce j Labels: n l j e.g. 1s_{1/2} ground state
 Multi electron configurations Split into inert core (filled shells) plus outer (valence) electrons Couple the & values to produce L Couple the s values to produce S Couple L and S to produce J (fermion asymmetry)
C3+1LJ e.g. 3P1 07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 312

Proton and Neutron g Factors		
Consider orbital & and intrinsic s angular momenta of the proton and neutron	2	
The orbital motion of the <u>charged</u> proton gives rise to a magnetic dipole moment and hence:	L	
g _l (proton) = 1		
The neutron is uncharged and hence:		
g_{ℓ} (neutron) = 0		
Since the proton and neutron are <u>composite</u> objects, the have:	зy	
g_s (proton) ≈ 5.56 and g_s (neutron) ≈ -3.83 (!)		
Thus the intrinsic spin of the <u>uncharged</u> neutron can give magnetic effects !	2	
Recall g_{ℓ} (electron) = 1 and g_s (electron) \approx 2.00		
07/09/2011 PHY S255: Quantum & Atomic Physics - E.S. Paul	324	

- The interaction energy between the nuclear magnetic moment and the magnetic field produced by the electron angular momentum is given by:
 E_{HF} = -μ_I B_J = {a/2} [F(F+1) I(I+1) J(J+1)] where:

 a = {g_I μ_N B_J} / J{J(J+1)}

 Hyperfine energy shifts are of the order:

 {m_e / m_p} α² E_n α fine structure constant
- Measurement of the hyperfine structure of atomic transitions can yield the nuclear spin I if J is known
 O7/09/2011 PHYS255: Quantum & Atomic Physics E.S. Paul 326

Quantum El	ectrodynamics (QED)	
QED can be used to great precision:	calculate the electron g factor with	ı
g = 2	2.002319304386	
This value agrees to obtained from the ti	many decimal places with the value ny Lamb shift	
> Triumph for QED !		
07/09/2011 PHYS255:	Quantum & Atomic Physics - E.S. Paul	337

	10.8 Rydberg Atoms	
A Rydberg its electro number n	Atom is an excited atom with one or more o ns that have a very high principal quantum	f
> These ator	ns have a number of peculiar properties:	
≻ exagge	rated response to electric and magnetic fiel	ds
≻ long de	cay periods	
> electro orbits o	n wave-functions that approximate classical of electrons about the nucleus	
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	339

