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PHYS255 Timetable 2011

 Semester 1 Lectures (ORBIT!)
 Tuesday        09:00 – 11:00     Rotblat (207)
 Wednesday   09:00 - 10:00     Life Sciences LT3 (215)

 Tutorials
 Wednesday Weeks 2, 5, 8, 11    Oliver Lodge (208)

 Science Communication Project 
 Deadline for written report: (10%)
 Monday November 14th at 16:30 (Week 8)

 Week 11:
 5 minute presentation using data projector 

(i.e. PowerPoint) (10%)
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Some Text Books

 A.C. Phillips

―Introduction to Quantum Mechanics‖

 R. Eisberg & R. Resnick

―Quantum Mechanics of Atoms, 

Molecules, Solids, Nuclei & Particles‖

 E. Zaarur, Y. Peleg, R. Pnini

―Quantum Mechanics‖ Schaum‘s Easy Outlines

 D. McMahon

―Quantum Mechanics Demystified‖ 

available at the Liverpool e-brary: 

http://www.liv.ac.uk/library/electron/db/ebrary.html

Basic Ideas of Quantum Mechanics

 A general introduction to basic concepts of quantum 
physics is available on VITAL:

QMIntro.pdf

 The mathematical formalism is also introduced for the 
present course, based on Schrödinger‘s wave mechanics 
(PHYS255), while more general formalisms of quantum 
mechanics are also introduced, useful for next year‘s 
PHYS361 module.
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PHYS255: Topics

 1.  Introduction

 2. Essential Mathematics

 3. Forces and Potential Energy

 4. Quantisation

 5. Wave Particle Duality

 6. Particle Wave Function

 7. Particle Wave Equation

 8. Wave Dynamics of Particles: Bound States

 9. Wave Dynamics of Particles: Scattering

 10. Atomic Structure
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1. Introduction

General ideas 
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The Birth of Quantum Mechanics

 Quantum Mechanics is the theory of atomic and 
subatomic systems

 At the end of the 19th century, classical physics had 
problems explaining the transfer of energy between 
radiation and matter (blackbody radiation)

 It was solved by Planck who introduced discrete quanta 
of energy – the energy exchange is not continuous

 Quantum means ―how much‖ or ―finite amount of some 
quantity‖
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The Death of Determinism

 The 1903 Nobel Prize was awarded for the discovery of 
nuclear radioactivity (Becquerel, Curie, Curie)

 Previously, physical phenomena were thought to be 
deterministic (Newton) and it was assumed that the 
motion of an object could be predicted with unlimited 
accuracy, given the initial conditions

 Radioactivity is different – the decay of each individual
nucleus cannot be precisely predicted, but its probability 
of decay could be analysed on the statistical behaviour  
of many nuclei
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The Rise of the Quantum

 Einstein (1905) showed that light acted as if it were 
―grainy‖ and used the quantum approach to explain the 
photoelectric effect – energy is exchanged by discrete 
photons

 Niels Bohr (1913) incorporated the quantum into his  
model of the atom and discrete electronic energy levels

 The quantum began to appear in other areas of physics, 
then in chemistry and other sciences

 A full theory of Quantum Mechanics was developed in 
1927
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What is Quantum Mechanics?

 Quantum Mechanics is the name given to a system of 
equations which must be used instead of Newton‘s Laws 
of Motion in order to calculate the behaviour of atoms, 
electrons and other ultimate particles of matter

 Newton‘s laws work well for the motion of planets, but 
not electrons in an atom

 Quantum Mechanics gives very nearly the same answers 
as Newton‘s classical laws, except when applied to ―small‖ 
systems
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When is a System ―Small‖ ?

 How do we distinguish between a ―small‖ (quantum) and a 
―large‖ (classical) system? 

 Planck‘s constant ħ = h/2π has the units of ―action‖, i.e.

length X momentum      or time X energy

 The ―size‖ of a system is judged by the typical action

 For an electron in an atom, the action ≈ ħ (―small‖ or  
quantum), while in an electronic device, the action » ħ 
(―large‖ or classical)
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Measurement
 In classical physics, the act of measurement need not 

effect the object under observation and the properties 
of a classical object can be specified with precision

 This is not the case in quantum physics! Measurement 
plays an active and disturbing role – quantum particles are 
best described by the possible outcomes of measurement

 Quantum Mechanics mathematically includes the effect 
of measurement on a system (Uncertainty Principle)

 Quantum Mechanics challenges intuitive notions about 
reality, such as whether the property of a particle exists 
before a measurement is made on it (Schrödinger‘s cat)
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Is Quantum Mechanics Correct?

 Albert Einstein never accepted the indeterministic
nature of Quantum Mechanics: ―God does not play dice‖

 Niels Bohr stated: ―Anyone who is not shocked by 
quantum theory has not understood it‖

 Nevertheless, despite its philosophical difficulties, no
prediction of quantum theory has ever been disproved!

 Quantum Mechanics is the founding basis of all modern 
physics: solid state, molecular, atomic, nuclear and 
particle physics, optics, thermodynamics, statistical 
mechanics…   …chemistry, biology, astronomy, cosmology
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2. Essential Mathematics
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Mathematical Techniques
 This course is based on ‗Wave Mechanics‘

 2.1 Algebra of Complex Numbers [ i = √(-1) ]
 Representation of waveforms 

 Combination of waveforms, magnitudes and phases

 Differentiation of waveforms

 2.2 Operators and Observables
 Eigenvalue Equation

 Basic ideas of wave mechanics

 Mutual disturbance

 Tutorial Set 1 (for week 2)
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 Represent vector r

(x + iy)

r eiθ = r exp{iθ}

 Magnitude (squared)

r2 = x2 + y2

= r2(cos2θ + sin2θ)

i.e.   cos2θ + sin2θ = 1

 Phase angle

θ = tan-1{y/x}

tanθ = {y/x}

= {r sinθ / r cosθ}

i.e. tanθ = sinθ / cosθ

Complex plane
x-axis ―real‖ x = r cosθ
y-axis ―imaginary‖ y = r sinθ

exp{iθ} = cosθ + i sinθ

2.1 Complex Numbers (Argand Diagram)
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Complex Exponentials

 Some useful relationships:

exp{0} = 1        (x=1, y=0)

exp{iπ/2} = i    (x=0, y=1)

exp{iπ} = -1      (x=-1, y=0) Euler equation

exp{i3π/2} = exp{-iπ/2} = -i     (x=0, y=-1)

 Draw the vectors !
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 Wave function
(x,t) = A sin {kx - t} 

 Amplitude A
 Wave number k (m-1) = 2π/, wavelength  (m)
 Angular frequency  (rad s-1) = 2π/T, period T (s) = -1

frequency  (hertz)
 Velocity c =  / k     ( =  )

 Can also represent in terms of complex exponentials

(x,t) = A exp {i(kx – t)} 

 Time independence
(x) = A exp{ikx}

Waveforms
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Waveforms (de Broglie Wave)
 Wave travelling in the positive x direction

(x) = A exp{ikx}

 Wave travelling in the negative x direction

(x) = A exp{-ikx}

 Relation between sines, cosines and complex exponentials

exp{iθ} = cosθ + i sinθ

cosθ = [ exp{iθ} + exp{-iθ} ] / 2
sinθ = [ exp{iθ} - exp{-iθ} ] / 2i
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Combination of Waveforms

 Waveform 1             ―wavevector 1‖

1 = A1 exp{ik1x}
 Waveform 2             ―wavevector 2‖

2 = A2 exp{ik2x}

 When summing waveforms (vectors) we must take into 
account the relative phase δ = θ2 – θ1 of the waveforms

 = 1 + 2 = A1 exp{ik1x} + A2 exp{ik2x} exp{iδ}

 In terms of sines (cosines)                             In phase: δ = 0

 = A1 sin{k1x} + A2 sin{k2x + δ}
Antiphase: δ = π (180°)
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Differentials
 Differential of waveform  sin θ :

 d/dθ { sin θ }  =  cos θ =  sin {θ + π/2}          phase +90°

 Differential of wavevector exp{iθ} :

 d/dθ { exp{iθ} } = i exp{iθ} = exp{iπ/2} exp{iθ}

= exp{i(θ + π/2)}                  phase +90°

 d2/dθ2 { exp{iθ} } = i2 exp{iθ} = -1 exp{iθ} 

= exp{iπ} exp{iθ}

= exp{i(θ + π)}                  phase +180°
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2.2 Operators

 An operator is a mathematical entity which ‗operates‘ on 
any function, of x say, and turns it into another function

 The simplest operator is a function of x

Â = Â(x)     e.g. Â(x) = x2

 Given any function ψ(x), this operator gives

Â(x) ψ(x) = x2 ψ(x)

 An operator may also differentiate, i.e. a function of ∂/∂x

Â(∂/∂x) e.g. Â(∂/∂x) = ∂2/∂x2

 Given any function ψ(x), this operator gives

Â(∂/∂x) ψ(x) = ∂2 ψ(x) /∂x2
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Operator Equation

 Take an operator Â(x,∂/∂x)

 Then for any function ψ(x)

 Now remove ψ(x) to give the operator equation
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Observables and Operators

 We can associate an operator with any observable, e.g. 
position or momentum

 The eigenvalues of the operator represent the possible 
results of the observation

 However, for small systems the act of observation can 
disturb the (quantum) system

 Hence for two successive measurements, the result 
depends on the order of observation
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Eigenvalue Equation

 To each operator Â(x,∂/∂x) belong a set of numbers an

and functions un(x) defined by the equation

 Here an is an eigenvalue and un(x) the corresponding 
eigenfunction

 The eigenfunctions of an operator are those special 
functions which remain unaltered under the operation of 
the operator, apart from multiplication by the eigenvalue

)()(ˆ xuaxuA nnn 
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Commutation Relations

 Now consider the successive operation of two operators. 
We define the ‗commutator‘ of two operators Â and Ĉ as 

[Â,Ĉ] = ÂĈ – ĈÂ

which is the difference between operating first with Ĉ
and then Â, and first with Â and then with Ĉ

 In general [Â,Ĉ] ≠ 0 but is some new operator

 For example, if Â=x and Ĉ=∂/∂x, it can be shown that

[x,∂/∂x]=-1
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Mutual Disturbance

 The commutator of the corresponding operators, e.g. Â
and Ĉ is therefore, in general, non-zero, [Â,Ĉ] ≠ 0

 The commutator gives a measure of the mutual 
disturbance of the two measurements

 The magnitude of the disturbance is related to ħ

 Thus Planck‘s constant gives a fundamental limit of the 
accuracy to which we can measure two (non-commuting) 
properties of a system, e.g. position and momentum of a 
particle
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The Uncertainty Principle

 Consider the measurement of position x and momentum p

 Accurate p requires low momentum photons (long 
wavelength) — very inaccurate x (and vice versa)

 The position and momentum operators mutually disturb
each other

 If we represent the position operator by 

 Then, since 

the momentum operator is

0]ˆ,ˆ[ px ipx ]ˆ,ˆ[

xx ˆ

1, 












x
x

x
ip
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assume:

Schrödinger
representation
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Momentum Eigenstates and Eigenvalues

 The eigenvalue equation for momentum is

 The solution yields an eigenstate of momentum p

 This is the space part of the de Broglie wave and 
justifies the i in

)()(ˆ xpuxup pp  )()( xpuxu
x

i pp 



 

/)( ipx

p exu 

ipx ]ˆ,ˆ[ otherwise no wave !

for any p
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Normalisation

 The eigenvalue equation remains unchanged if the 
eigenfunctions are multiplied by a numerical factor, e.g.

 To fix the magnitude of the eigenfunctions, we impose 
the normalising condition

 For the de Broglie wave this yields

)()(ˆ xpCuxCup pp 

1)()(* 



dxxuxu pp

1|| 2//*










  dxCdxCeeC ipxipx 
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Localised Particle

 If the particle (de Broglie wave) is confined to the 
region 0 ≤ x ≤ L, the normalisation condition becomes

 Hence

 The normalised de Broglie wave is

1||||
0

22
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Total Energy of a Particle

 The energy of a free particle is classically just its kinetic 
energy

 The corresponding operator (Hamiltonian) is

 In the presence of a potential V(x) the Hamiltonian is

m
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The Schrödinger Equation

 The possible energy levels of a system are the 
eigenvalues of the Hamiltonian operator

 This equation is solved subject to boundary conditions 
and the fact that the eigenfunctions uE(x) must be finite 
everywhere

 The choice of the potential energy function V(x) defines 
the system

)()(ˆ xuExuH EnE 
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Expectation Value of an Operator

 The average value of repeated observations Â on systems 
in an arbitrary (normalised) state ψ(x) is

 Applying this to the observation of position, implies that 
the probability of position x is

 The normalisation condition ensures that the probability 
of finding the particle somewhere is unity

dxxAxAa )(ˆ)(ˆ *  

2
|)(|)( xxP   probability density
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The Overlap Integral

 The probability of an observation Â on a state ψ(x)
having a result a is related to the extent that the 
function ψ(x) resembles the eigenfunction ua(x)

 In general, any physical state ψ(x) can be expressed as a 
linear expansion of the eigenfunctions ua(x) of an 
operator Â

2
* )()()(  dxxxuaP a 

)()( xucx
i

aii
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Summary: Operators
 A spatial operator ‗extracts‘ the position co-ordinate 

from a wave-function, e.g.

 Similarly, the differential momentum operator ‗extracts‘ 
the momentum from a wave-function, i.e.

 Other types of operators may be used, e.g. matrix 
operators (Heisenberg).

),,,(),,,(ˆ tzyxxtzyxx 

),,,(),,,(),,,(ˆ tzyxptzyx
x
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3. Forces and Potential Energy
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Introduction

 Quantum Physics is the theory of atomic and subatomic 
matter

 It was developed from Classical Physics

 Matter (Newton)

 Radiation (Maxwell)

 Certain phenomena required energy quantisation

 Black body radiation, photoelectric effect
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Classical Matter

 Point particle, specified by

Mass m      Energy E     Momentum p

 Governed by Newtonian Mechanics (for constant mass)

 One dimension x , or radial force r

 Physical system specified by
force F(x) at position x
force F(r) at position r

ma
dt

d
m

dt

d


vp
F

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 42

Forces, examples

 Gravity: force downward, g acceleration due to gravity

 Harmonic Oscillator: restoring force  

 Hydrogen atom: Coulomb attraction, spherical symmetry 

mgx )(F

xmx 2)( F
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Force and Potential Energy

 Potential energy is defined as

 The lower limit x0 (arbitrarily) defines when V(x0) = 0

 Hence force is given by

 i.e. force = −(slope of V)


x

x

dxxxV
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)()( F

x

V
x
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Potential Energy Functions, examples

 Gravity

 Harmonic Oscillator

 Hydrogen Atom

22
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Conservation of Energy
 Force may expressed as

 Integrating yields

 Hence

 Rewrite as

 Potential Energy + Kinetic Energy = Total Energy (const)

dx

dv
mv

dt

dx

dx

xdv
m

dt

xdv
mxF 

)()(
)(

   vdvmdx
dx

dv
mvdxxF )(

constmvxV 
2

2

1
)(

ExTxV  )()(
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The Potential Well

 Given V(x), a particular value of x is only possible for 
positive kinetic energy T(x)>0, i.e. E>V(x)

 Classically the particle will oscillate between positions x1

and x2 in the above potential

T(x)

ExTxV  )()(

E = constant

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 47

Quantum Mechanics is Weird !

 What happens when a quantum 
particle comes to the edge of a 
potential (cliff) ?

 There is a chance of it being 
reflected (R) rather than 
transmitted (T) !

 See VITAL for links to movies of wave packet motion
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4. Quantisation
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Introduction

 Energy quantisation is required to describe the 
following phenomena: 

 4.1 Black Body Radiation, Ultraviolet Catastrophe 

 4.2 Photoelectric Effect               PHYS259

 4.3 Atomic Spectra                       PHYS259

 Classical physics with no requirement of energy 
quantisation fails to describe the above
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4.1 Black Body Radiation

 Radiation from a heated source with no specific structure

 Frequency distribution determined only by temperature T

 light bulb
the Sun
but not a sodium lamp

 Heat is radiation from random motion of electrons in the 
source (Maxwell)
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Black Body Radiation Distribution
 Continuous spectrum with 

respect to 
 (wavelength) or
 (frequency) or
ω (angular frequency)

 Most energy is radiated 
at the ―peak‖

 Wien‘s Law:
Peak wavelength  1/T
Peak frequency  T

where T is the 
temperature
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Classical Energy Density

 Assume that the energy of radiation in the frequency 
interval ω → ω + δω can be arbitrarily small, depending 
only on the intensity

 Energy density = energy/volume

 From Statistical Mechanics

 Completely wrong! ―Ultraviolet Catastrophe‖

3

2

)(~)(
c

d
kTd




3

2

)(
2

)(
c

d
kTd




 

Rayleigh-Jeans formula

i.e. ω2 dependence

Boltzmann‘s constant k, 
speed of light c
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Ultraviolet Catastrophe

 A disaster for Classical Physics!
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Planck‘s Solution

 Planck assumed that the energy of radiation, of 
frequency ω, can only occur in quanta (photons) of 
magnitude

 Planck‘s constant has dimensions of angular momentum, or 
momentum x length, or energy x time

 A continuous variable (integrate) is now replaced by a 
discrete variable (sum of series)

 hE  

Jsh 341005.12/  

The Quantum

 The word quantum is Latin for 

―how much‖ 

or 

―finite amount of some quantity‖

 Planck: 

energy exchange between radiation and matter is not 
continuous…

radiation and matter exchange energy in discrete 
lumps or multiples of the basic quantum 
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Planck‘s Radiation Formula

 The energy density is given by

 Low frequency (kT»ħω)

 High frequency (kT«ħω)
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Tutorial 1

Exponential damping
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Cosmic Background Radiation

 The Universe emits 
blackbody radiation at 
a temperature of 
2.725 K, a remnant of 
the Big Bang

 Experiment and 
quantum predictions 
seem to match 
perfectly!

T = 2.725±0.001 kelvin
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4.2 Photoelectric Effect

 Monochromatic light of 
frequency  is incident on a 
cathode

 Above a certain threshold , 
electrons are emitted from the 
cathode causing current flow to 
the anode

 If V is increased (to V0) then 
eventually the electrons will fail 
to have enough energy to reach 
the cathode and the current 
stops

 V0 is the ―stopping potential‖

- +

V
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Photoelectric Effect

 Experimentally:

 V0 does not depend on the intensity

I() of the monochromatic light

 V0 depends linearly on the frequency

 of the radiation

 Theoretical Interpretation (Einstein):

Each photoelectron is emitted from 

the cathode by the absorption of one

quantum of energy   E = h from the 

radiation
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Photoelectric Effect: Work Function

 It takes a certain amount 
of energy to liberate the 
electron

 The kinetic energy of the 
photoelectron is:

T = h – Φ

where Φ is the ―work 
function‖ of the cathode 

 To each (photo)electron in 
the cathode, the incident 
monochromatic radiation is 
a stream of mono-energetic 
quanta (photons) of energy 
h which it can absorb

Energy from Matter to Radiation

 The generation of X rays – by firing electrons at a metal 
target – is the inverse of the photoelectric effect.

 Energy is transferred from matter to radiation

 The X ray spectrum has a maximum frequency, or 
minimum wavelength, that can be related to the kinetic 
energy of the electrons, and the accelerating voltage V
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4.3 Atomic Spectra (Line Spectra)
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Hydrogen emission spectrum

Hydrogen absorption spectrum

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 64

Discharge Spectrum of Atomic Sodium
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Discrete Atomic Energy Levels

 Excitation of atoms or molecules in the gaseous phase 
(heating) leads to radiation emitted with a discrete 
spectrum of wavelengths  (or frequency )

 Atoms or molecules emit photons of energy E = h as 
they de-excite from one discrete energy state to 
another. Atomic, molecular energy is quantised

h = Ei – Ef (Bohr)
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Hydrogen Balmer Series

 The Balmer series in hydrogen is a set of dicrete-line 
transitions given by:

1/ = RH {1/n2 – 1/m2}            n = 2,  m = 3,4,5…

 The Rydberg constant is:

RH = 1.097 x 107 m-1

 Other series occur for 

n = 1, 3, 4…   m > n
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The Bohr Atom
 Bohr postulated that the angular 

momentum of an allowed electron orbit 

is quantised and given by

L = ℓħ       ℓ = 1,2,3…

 This implied discrete allowed energy levels

En n = 1,2,3…

 A single photon of frequency ω is emitted when an 
electron ‗jumps‘ from one orbit to another

Em – En = ħω m > n

 Bohr calculated

ħωmn = {Z2e2/8πε0} {1/a0} {1/n2 – 1/m2}
constants   - Bohr radius  - discrete values
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Quantisation: Summary
 Ultraviolet Catastrophe

Energy cannot be subdivided into ever smaller ―pieces‖ 
– quanta

Energy is quantised: E = nh (n integer)

 Photoelectric Effect

Electromagnetic radiation (light) of frequency 
consists of a ―stream‖ of photons each of energy h

 Atomic Spectra

Consist of discrete frequencies i equal to the energy 
released in one photon as the atom de-excites from 
higher to lower quantised energy states

 Classical physics, with no requirement of energy 
quantisation, fails to describe these phenomena
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5. Wave Particle Duality
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What Is A Particle?

 Finite volume

 Energy contained within mass

 Described by classical physics

 Must obey laws of energy, charge and momentum 
conservation
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What Is A Wave?

 A disturbance within a medium

 Transmits energy without net movement of matter

 Not confined to boundaries
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Light As Waves Light As Particles

Reflection                           

Refraction                          

Interference                     

Diffraction                        

Polarisation                        

Photoelectric Effect  

Light: Waves Or Particles?
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Light As Waves
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Diffraction

Polarisation
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Double Slit Experiment

Interference

Double Slit Experiment
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Interference Fringes

Particles Or Waves?
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 Sending particles or waves through the double slits 
should produce different results
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Double Slit Experiment With Particles

 Sending electrons, one at a time, through a double slit (!) 
produces an interference pattern (over time) !
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How Big Can Quantum Particles Be?

 The double split experiment has been performed for 
fullerene molecules, C60 and C70, with dimensions of the 
order of 1 nm (!)

 Fluorinated fullerine molecules, C60F48 , with a mass of 
1632 amu, also show quantum interference effects

 What next?

 Viruses,     Nanobacteria
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Carbon-60 
structure
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Electromagnetic Radiation

 Wave phenomenon in E B, interference, diffraction 
(Maxwell)

 Particle phenomenon in energy transmission

 Photons (Planck, Einstein)

 Newton‘s corpuscles

 Waves or particles? 

Both!                                Wave-particle duality
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Matter

 Wave phenomenon in interference, diffraction 

 Electron, neutron microscopy (Davisson & Germer)

 Particle phenomenon in kinematics

 Energy, momentum

 Mass spectrometry

 Waves or particles? 

 Both! Wave-particle duality
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Electromagnetic Radiation: Photons

 Energy density Π (Poynting vector)

 Momentum density Π/c in free space

 Energy density Π  h (monochromatic frequency)

 Momentum density Π/c  h/c = h/ (quantum)

 Kinematic properties of photon:

 Energy E = h (photoelectric effect)

 Momentum p = h/

 Also: E = cp (massless particle  = c/)

classical
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Compton Scattering
 Arthur Compton observed 

the scattering of x rays
from electrons and found 
scattered x rays with a 
longer wavelength than those 
incident on the target

 He explained the effect by 
considering a particle
(photon) nature of light and 
applying conservation of 
energy and momentum 

 1927 Nobel Prize
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Compton Effect

 A photon of energy Ei scatters inelastically from an 
electron of mass me
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Electrons as Waves

 The photoelectric and Compton effects suggest a 
particle nature for light

 However electrons can show wave-like properties!
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Davisson Germer Experiment
 Electrons scattered from a 

crystal lattice show an 
interference pattern

 Bragg law had been applied 
to X rays

 Now applied to electrons

 Put wave particle duality on 
a firm experimental footing

1/ = n/{2d sin θ}    = p/h = √{2mE} / h = √{2meV} / h

Particle Diffraction

Davisson Germer 

Experiment

 Electrons exhibit 
wave-like behaviour:

diffraction

 A particle seems to 
be acting as a wave !
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Particles/Waves of Matter

 Particle energy (classical)

E = √{c2p2 + m2c4}      (relativistic kinematics)

E = mc2 + p2/2m + …  (non-relativistic)

 Wavelength (quantum)

p = h/ (De Broglie, electron/neutron scattering)

 Frequency (quantum)

E = h (energy quantisation, massive particle  ≠ c/)

 The physics of matter at the dimension of atoms can be 
understood in terms of waves or of particles
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Equivalence

 Simple equivalence, particle-wave duality

Energy √{c2p2 + m2c4}  h

Momentum p  h/

Frequency E/h  

Wavelength h/p  

Theory photon  quantised electromagnetism

electron  ?

neutron  ?

 Perceptions in terms of human experience/observation
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Wave Particle Duality: Summary
 Certain phenomena, e.g. reflection, refraction can be 

understood in term of light consisting of waves or 
particles

 Certain phenomena, e.g. interference, diffraction, 
polarisation can only  be understood in term of light 
consisting of waves and not particles

 However the photoelectric effect can only  be 
understood in term of light consisting of discrete 
particles (photons, Newton‘s corpuscles) and not waves

 We need to consider both aspects, depending on what we 
―are looking at‖
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6. Particle Wave Function
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Waves

 Wave motion in physics is a general phenomenon in 
which, at any point in space (x,y,z) and time t, an 
observable (e.g. E) has a well specified value E(x,y,z,t)

 This observable  varies in such a manner that one 
observes periodic dependence in space and time

 Water waves E = displacement

 Sound waves E = pressure

 Earthquake   E = stress

 Light        E = Electromagnetic  

field
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General Wave Equation

 Wave motion is predicted from the dynamics of the 
physics in the form of a wave equation

 E.g. transverse waves on a string: E = Y            Mechanics
∂2Y/∂x2 = {1/c2} ∂2Y/∂t2 c2 = tension / {mass/length}

 E.g. sound waves: E = P (pressure)              Fluid Dynamics
∂2P/∂x2 = {1/c2} ∂2P/∂t2 c2 = pressure / density
or 

2P = {1/c2} ∂2P/∂t2 in 3D

 E.g. electromagnetic waves: E = field Electromagnetism


2E = {1/c2} ∂2E/∂t2
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Wave Equation Properties

 This wave equation is a 2nd order partial differential 
equation

 Solutions are determined by boundary conditions

The equation is linear: a new solution can be found as 
the sum of other solutions

 c = ―phase velocity‖

2

2

22
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t

y
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y
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Electromagnetic Waves in Free Space

 Photons in free space

∂2E/∂x2 = {1/c2} ∂2E/∂t2

 Look for a solution E = E0 cos (kx – t)

Harmonic:  = ck,  = c/

 Differentiate twice:

∂2E/∂x2 = -k2 E0 cos (kx – t) 

∂2E/∂t2 = -ω2 E0 cos (kx – t)

 A solution is:

E = E0 cos (kx – t)    if k2 = 2/c2

 This represents a harmonic (sinusoidal) plane wave in E 
with wavelength  = 2π/k, and frequency  = /2π

 Also  = c

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 96

Electromagnetic Wave

 A plane harmonic EM wave E = E0 cos (kx – t) is not 
equal to one photon!

 Wave-particle duality is so far a qualitative concept

 It allows us to understand

 It does not (yet) allow us to calculate or predict

 We need a theory in which the representation of a 
particle as a wave yields predictions for the behaviour of 
particles
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Wave Function

 Postulate 1   (a true revolution in physics)

To describe the dynamics of any particle it is 
necessary to assign it a wave-function: (x,t)

The wave-function (x,t) may be complex (real & 
imaginary)

At a time t, the probability of finding the particle in a 
small region of x is: 

|(x,t)|2
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What is  ?

 So far, all wave motion has been recognised as a periodic
variation of a (real) physical observable

 What is the physical observable corresponding to  ?

There isn‘t one !

One cannot say that a particle is a wave phenomenon of 
any particular physical observable

A particle wave-function is a construct in a theory with 
which we are able to calculate and predict in new ways

 The real physical quantity is the ―probability density‖ ||2

Probability Density (1D)

 At a time t, the probability of finding a particle in a small 
region of x is: 

|(x,t)|2 =   *

 If we know that the particle is confined to a region  

x1  x  x2 then the probability of finding the particle in 
this region is 1, i.e. the wave function is normalised:

∫|(x,t)|2dx = 1      (integrate between x1 and x2)

 A stationary state occurs if |(x,t)|2 =   * has no
time dependence
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Indeterminism in the Real World

 Born (1927) introduced the probabilistic interpretation  
of Quantum Mechanics

 Quantum Mechanics only allows us to calculate the 
probability of a particle being found at a specific  
position in space

 We can never specify exactly where the particle is

 This can be generalised to other properties, such as 
momentum
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7. Particle Wave Equation

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 102

Introduction

 Why do we use the concept of a particle?

 In many cases the dynamics can be calculated assuming    
a mass m
 Free electron theory of metals/conductors
 Particle accelerators and storage rings

 In many cases detection is random ―hits‖ as ―localised‖ 
energy is deposited
 Geiger counters
 Photomultipliers

 Localisation is in space and time
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Wave Equation

 In many cases the dynamics can be calculated assuming 
interference, diffraction like phenomena
 X ray diffraction
 Neutron/electron diffraction

 In many cases detection of particle diffraction, 
interference follows collection of many detected hits 
spread over a distribution suggesting individual particles
do not have completely predictable behaviour
 Probability theory
 Wave function postulate

 No localisation is in space and time
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Simplest Wave Function

 Consider the simplest possible choice of a complex form 
for (x,t) to which we can assign a unique harmonic wave 
number k = 2π/ and angular frequency  = 2π

 = A exp { i(kx – t) }                     (7.1)

where A is a constant (1) independent of x and t

 Can we assign this to the wave function of a free 
particle?

 Yes – the de Broglie wave (see QMIntro.pdf)
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 The energy and momentum of a ―wave‖ corresponding to a 
particle are:

Energy: E = h = ħ (ħ = h/2π)
Momentum: p = h/ = ħk

 Assuming the particle is non-relativistic, the total energy 
E of the free particle is equal to its kinetic energy T:

E = T = p2/2m

 So for a free particle (―dispersion relation‖):

ħ = (ħk)2/2m                                 (7.2)

De Broglie Wavelength
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Simplest Wave Equation
 Look for the simplest linear differential equation which 

has solution  and satisfies  = ħk2/2m

 = A exp { i(kx – t) }

∂/∂x = ikA exp { i(kx – t) }

∂2
/∂x2 = -k2A exp { i(kx – t) }      (quadratic in k)

 And

∂/∂t = -iA exp { i(kx – t) }         (linear in ω)

 Combine:

i ∂/∂t = {-/k2} ∂2
/∂x2

 Or using Eq. 7.2 (i.e. ħ = (ħk)2/2m): 

iħ ∂/∂t = {-ħ2/2m} ∂2
/∂x2                               (7.3)
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Particle in a Potential

 Consider a particle moving in the presence of a constant 
potential energy V(x) = V0

 Total energy is a sum of kinetic and potential energies

E = T + V0  = p2/2m + V0

 From De Broglie:

ħ = (ħk)2/2m + V0                                                       (7.4)

 Again look for the simplest possible solution

 = A exp { i(kx – t) }

 Differentiate:

∂2
/∂x2 = -k2A exp { i(kx – t) } = -k2



 And

∂/∂t = -iA exp { i(kx – t) } = -i

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 108

Particle in a Potential

 Combine:

iħ ∂/∂t = ħ  = {-ħ/k2} ∂2
/∂x2

 Or using Eq. 7.4 (i.e. ħ = (ħk)2/2m + V0):

iħ ∂/∂t = -{ħ2/2m + V0/k2 } ∂2
/∂x2     

 And remembering that:

∂2
/∂x2 = -k2



we obtain:

iħ ∂/∂t = -{ħ2/2m} ∂2
/∂x2 + V0  (7.5)

 This is the free particle solution

 Note that V0 does not localise the particle
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Physical Properties of Free Particle

  = A exp { i(kx – t) } with  = ħk2/2m

 The probability density:

||2 = |A|2                              note ||2 =  *

is constant for all x and t

 There is no preferred (more likely, more probable) value 
of x where we are more likely to find the particle

The particle (momentum p = ħk) is completely non-
localised in space (x)

 There is no preferred value of t at which we are more 
likely to find the particle

The particle (energy E = ħ) is non-localised in time (t)
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A Revolutionary Prediction !

 A free particle has a specified momentum and energy but 
cannot be localised in space or time

 The particle is ―everywhere all the time‖

 This is a revolutionary prediction from a revolutionary 
theory

 Wave function:
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Localised Particle

 Localise a particle: restrict it to a range Δx in x

 For all t, spatial localisation

 The particle may be constrained by an external force

 Or potential energy V(x)

Classically particle localised
here when in equilibrium

 No longer a ―free‖ particle

 Wave Eq. 7.3

iħ ∂/∂t = {-ħ2/2m} ∂2
/∂x2

no longer valid

 Wave function

 = A exp { i(kx – t) }

no longer valid
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Wave Function of Localised Particle

 Intuition from many wave phenomena

less probable

more probable

 Addition of two different 
harmonic waves

 = A1sin{k1x} + A2sin{k2x}

~ sin{(k2-k1)x/2} 

x cos{(k2+k1)x/2}

 Beat pattern when k‘s 
slightly different

 Regions of high probability 
and low probability
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Wave Packet

 Now add many different harmonic waves

= ∑A(ki) sin{kix}, or  = ∫A(k) sin{kx} dk

most probable, particle ―localised‖

 Quantum wave packet:  (x,t) = ∫A(k) exp{ i(kx - t) } dk
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Quantum Wave Packet

(x,t) = ∫A(k) exp{ i(kx - t) } dk (7.6)

 This has no unique wave-number k, no unique frequency 

 The wave function is (infinite) sum of harmonic (free
particle) wave functions

Each contribution has its own k and 
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Wave Equation for Localised Particle

 Total energy:     E = T + V(x)

 Classical physics says that if the total energy is fixed 
(constant E), then the kinetic energy T varies with x

 Momentum p varies with x

 Equation like (7.4) (ħ = (ħk)2/2m + V0) is not possible

 Postulate 2

The wave equation, a solution of which is the wave-
function  of a particle in a region with the potential 
energy function V(x), is

iħ ∂/∂t = -{ħ2/2m} ∂2
/∂x2 + V(x)  (7.7)
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Schrödinger‘s Equation

 Equation (7.7) is known as Schrödinger‘s equation

 It is not proven, only postulated !

 When the potential is constant

V(x) = V0

we know it works

 Solutions of Schrödinger‘s equation are usually 
mathematically tricky !

 Now for some examples
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Particle Localised In A Box

 For all energies, the particle is 
constrained to lie in the region 

0  x  a

x < 0            V(x)  ∞

0  x  a      V(x) = 0

a < x             V(x)  ∞

 Classically, the particle may have 
any energy and may be found 
anywhere in region 2

 The ―box‖ does not change with time t

 V is not a function of t
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Infinite Square Well Potential

 Apply the Schrödinger equation in regions 1 and 3

iħ ∂/∂t = -{ħ2/2m} ∂2
/∂x2 + V(x) 

 Or, dividing by V(x):

{iħ/V(x) } ∂/∂t = -{ħ2/2mV(x)} ∂2
/∂x2 + 

 But 1/V(x) = 0, hence

 = 0                                   (7.8)

 Apply the Schrödinger equation in region 2 with V(x) = 0

iħ ∂/∂t = -{ħ2/2m} ∂2
/∂x2

 Confining box does not change with time, hence we expect 
x dependence of  to be independent of t

(x,t) = (x) θ(t)
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Infinite Square Well Potential

 Differentiate:

∂/∂t =  dθ/dt     and ∂2
/∂x2 = θ d2

/dx2

 Substitute in Schrödinger equation:

iħ  dθ/dt = -{ħ2/2m} θ d2
/dx2

 Rewrite:

iħ {1/θ} dθ/dt = -{ħ2/2m} {1/} d2
/dx2

function only of t          function only of x  both constant

 Cancel ħ and equate to ―constant‖ :

dθ/dt = -{i} θ and d2
/dx2 = -{2m/ħ} 

 Solution for θ:

θ = {constant} exp{-it}
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Time Independent Wave Function

 Time dependence θ of  is such that the probability 
density ||2 has no time dependence              i.e. θ θ* = 1

 ―Time independent‖ or ―stationary‖ wave function:

 =  exp{-it}

 Solution for :

d2
/dx2 = -k2

 where k2 =  {2m/ħ}

 = A sin{kx} + B cos{kx}  

with A, B constants of integration

 Hence in region 2:

 =  θ =  [ A sin{kx} + B cos{kx} ] exp{-it}    (7.9)
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Stationary Wave Function

 Stationary wave function:

Complex pieces of  only in time dependence

 Compare solutions in regions 1, 2, 3 i.e. eqs 7.8 and 7.9

 In 7.9 for x = 0

(x=0) = 0      A sin{0} + B cos{0} = 0

 Since sin{0} = 0 and cos{0} = 1, then

B = 0 and A ≠ 0 

 Now at x = a

(x=a) = 0      A sin{ka} + B cos{ka} = 0

 Since B = 0 and A ≠ 0 , then

sin{ka} = 0 and hence ka = nπ, n = 0,1,2…
pointless solution
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Discrete Solutions

 Allowed values of k:

k = n π / a         n = 1,2,3,…

 Hence allowed values of :

 = {ħ/2m} {π2/a2} n2

 The solutions for the wave function are:

 = A sin{nπx/a} exp{-it}      (0  x  a)
(x)              θ(t)

 = 0                                      (x < 0, a < x)

 The probability density is:

||2 = * = A2 sin2{nπx/a}
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Infinite Well Wave-Functions

 There are n - 1 ―nodes‖ (minimum 
probability density) away from 

x = 0, x = a

 There are n ―antinodes‖ (maximum 
probability density)

a

a
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Physics of the Solutions

 Particle probability density ||2 is confined (non-zero) 

only inside the box (0  x  a) classical physics

 Particle more likely to be found at some values of x
(between 0 and a) than at others

||2  sin2{nπx/a}     probability density

 The wave function (x,t) = (x) exp{-it} has a time 
dependence exp{-it}

 time dependence of a ―stationary state‖ 

 same as that of a free particle wave function
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Quantised Energies

 Using De Broglie E = h = ħ we find that the allowed 
energies of the particle in a box are:

E = {ħ2π2/2ma2} n2 = {h2/8ma2} n2

 Energies of a particle in a confined region (bound state) 
are quantised (E  n2)

n = 1              E = h2/8ma2

n = 2             E = 4h2/8ma2

n = 3             E = 9h2/8ma2

n = 4             E = 16h2/8ma2
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Time Independence

 Schrödinger‘s equation with V(x) time independent (7.7)

iħ ∂/∂t = -{ħ2/2m} ∂2
/∂x2 + V(x) 

 Guided by the ―particle in a box‖ solution, look for a 
solution:

(x,t) = (x) exp{-it}

 Now:

iħ ∂/∂t = ħ exp{-it} (x) 

 And:

-{ħ2/2m} ∂2
/∂x2 = -{ħ2/2m} exp{-it} ∂2

/∂x2 

 And:

V(x)  = exp{-it} (x) V(x)

 Substitute in Schrödinger equation (7.7)

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 127

Time Independent Schrödinger Equation

 We find that:

ħ exp{-it} (x) = -{ħ2/2m} exp{-it} ∂2
/∂x2                  

+ exp{-it} V(x) (x)

 Cancelling exp{-it} this can be rewritten as:

ħω (x) = -{ħ2/2m} ∂2
/∂x2 + V(x) (x)

 Or:

E (x) = -{ħ2/2m} ∂2
/∂x2 + V(x) (x)            (7.10)

 This is the time-independent Schrödinger equation
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V(x) is not constant

 See Tutorial 2, Question 2

 If V(x) is non-uniform and non-zero, the ―stationary‖
(time independent) wave-function may assume a Gaussian 
form

(x,t) = A exp {-x2/(2ζ2) } exp {-it}

i.e. it has spatial extent related to ζ – it is therefore 
localised in space

 The particle is not free and a unique value of momentum 
cannot be assigned to it        

example: Harmonic Oscillator
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The Uncertainty Principle

 Localised particle, e.g. particle in a box (n = 1)

  sin{kx}  exp{ikx} - exp{-ikx} 

 Now: k = π/a

 And: p = ħk = ħπ/a = h/2a

 Uncertainty in p: Δp ~ h/2a

 Uncertainty in x: Δx ~ a

 Hence: Δp Δx ~ h/2
Heisenberg Uncertainty Principle

 Free particle

 Momentum certain Δp = 0, but location unknown Δx∞

a
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3D Particle in a box

 Quantum theory suggests that a large amount of energy
is required to contain a particle in a small volume

 It arises from the uncertainty principle

 In three dimensions, the infinite-well energies are 
quantised as:

E = {h2/8ma2} (nx
2 + ny

2 + nz
2)

 The lowest energy is when nx = ny = nz = 1:

Emin = {3h2/8ma2}

from which we can, for example, estimate the energy of 

an electron confined in an atom or a proton confined in a 

nucleus (Tutorial 2, Question 5)
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The Uncertainty Principle

 Generic wave packet describing localised particle (7.6)

(x,t) = ∫A(k) exp{ i(kx - t) } dk

 Sum of many exp{ i(kx - t) } with complex amplitudes A(k)

and spread Δk

 Uncertainty in p: Δp

 Now: 

Δp Δx ~ ħ/2

Δt ΔE ~ ħ/2
 Revolution in physics:

A particle cannot be localised both in position and 
momentum !
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Gaussian Wave Packet

 Minimum uncertainty 
wave packet:

Gaussian
~exp{-x2/2ζ2}

 See VITAL for links to 
movies of wave packet 
motion

2d free particle
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Particle Wave Equation: Summary

 The wave function (x,t) of a particle under the 
influence of the potential energy function V(x,t) is the 
solution of the Schrödinger equation

iħ ∂/∂t = -{ħ2/2m} ∂2
/∂x2 + V(x,t) 

which matches external boundary conditions

 If V(x,t)  V(x), i.e. the potential energy is time 
independent, then  is stationary

(x,t) = (x) exp{-i(E/ħ)t}                          E = ħ

and (x) is a solution of the time independent 

Schrödinger equation

 A time independent potential energy V(x) which localises
a particle yields discrete quantised energies of the 
particle
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8. Wave Dynamics of Particles: 
Bound States

 8.1 Finite Square Well

 8.2 Harmonic Oscillator

 8.3 Zero Point Energy

 8.4 3D Bound States

 8.5 3D Bound States & Angular Momentum

 8.6 3D Harmonic Oscillator Revisited

 8.7 The Hydrogen Atom
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Wave Dynamics: Bound States

 We have already considered a particle in an infinitely 
deep potential well

 The particle is confined in a bound state

 The energy of the particle is quantised

 Next consider a potential with a finite depth

 Finite square well potential
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8.1 Finite Square Well Potential

 For the finite potential well, the Schrödinger equation 
gives a wave function with an exponentially decaying 
penetration into the classically forbidden region outside 
the box !

a

 Since the wave 
function penetration 
effectively enlarges
the box, the finite 
well energy levels are 
lower than those for 
the infinite well
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Particle in Finite Square Well

 Particle has total energy:

E = T + V
kinetic  +  potential

 Potential Well is of the form:

|x| > a/2     V = 0

|x| < a/2     V = -V0

 Solve the time independent Schrödinger equation in 
regions 1, 2 and 3 for 
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Finite Square Well

 In regions 1 and 3, with V = 0:

-{ħ2/2m} ∂2
/∂x2 = E  like ―free particle‖ solution

 Try solutions of the form:

1 = A1 exp{ikx} + B1 exp{-ikx}                        (8.1.1)

3 = A3 exp{ikx} + B3 exp{-ikx}                       (8.1.2)

with constants A1, B1, A3, B3 and where k is:

k = p/ħ = √{2mE} / ħ Energy E = T

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 140

Finite Square Well

 In region 2 with V = -V0:

-{ħ2/2m} ∂2
/∂x2 + (-V0) = E  T + V = E

hence

-{ħ2/2m} ∂2
/∂x2 = (E + V0) 

 Try a solution of the form:

2 = A2 exp{ikx} + B2 exp{-ikx}

with constants A2, B2 and where k is now:

k = √{ 2m (E + V0) } / ħ
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Boundary Conditions

 Look for bound state, localised particle, which implies 
that in regions 1 and 3:

x  -∞      ||2
 0

x  +∞      ||2
 0

 To achieve this we need ―real‖ exponentials for x  ±∞ in 
equations (6.1.1) and (6.1.2), i.e. rapid exponential fall off 
of ||2 in the classically forbidden regions

 This can be achieved by setting ik =  (i.e. k = -i)

 Then:

exp{±ikx}  exp{±x}

 And: 

||2
 exp{±2x}
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Boundary Conditions

 If ( k = √{2mE} / ħ ) is now imaginary in regions 1 and 3, 
then this implies that:   

E < 0         since  m > 0

 And so in region 2:

E = T – V0 < 0

 Or a ―bound‖ state occurs for:

T < V0

 Note that if T > V0 the particle is not confined to the 
box, it has enough energy to escape
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Overall Solution for All x

 In region 1: ||2
 0, x  -∞

1 = A1 exp{+x}          (k = -i)                 (8.1.3)

 In region 2: k = √{ 2m (E + V0) } / ħ > 0

2 = A2 exp{ikx} + B2 exp{-ikx}                 (8.1.4)

 In region 3: ||2
 0, x  +∞

3 = B3 exp{-x}          (k = -i)                 (8.1.5)
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Matching  at Sharp Changes in V

 The potential V changes abruptly at the intersections of 
regions 1 - 2 and regions 2 – 3

 The wave function  must be smooth (continuous) across 
these boundaries

 The derivative of the wave function d/dx must also be 
smooth across these boundaries

 Why ?

It works !

Seen in all other wave phenomena
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Continuity of Waveforms

 Waveforms in Quantum Mechanics must be ―continuous‖

 (x) must be single valued for all x

 d/dx must be single valued for all x

particularly at boundaries

  

(x) (x) (x)
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Overall Solution (cont)

 Regions 1-2: x = -a/2

 Continuity of  (8.1.6)

A1 exp {-a/2} = A2 exp{-ika/2} + B2 exp{+ika/2}

 Continuity of d/dx (8.1.7)

A1 exp {-a/2} = ikA2 exp{-ika/2} - ikB2 exp{+ika/2}

 Regions 2-3: x = +a/2

 Continuity of  (8.1.8)

A2 exp {+ika/2} + B2 exp{-ika/2} = B3 exp{-a/2}

 Continuity of d/dx (8.1.9)

ikA2 exp {+ika/2} - ikB2 exp{-ika/2} = -B3 exp{-a/2}
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Overall Solution (cont)

 Eliminate A1 from (8.1.6) and (8.1.7):

( - ik) A2 exp{-ika/2} = -( + ik)B2 exp{+ika/2}

 Eliminate B3 from (8.1.8) and (8.1.9):

( + ik) A2 exp{+ika/2} = -( - ik)B2 exp{-ika/2}

 Solution: A2 = B2 = 0 (pointless !)

 Or equations consistent with same unique ratio A2/B2

-[( + ik)/( - ik)] exp{+ika} = -[( + ik)/( - ik)] exp{-ika} 

 This reduces to:

2i sin {ka/2} = -2ik cos {ka/2}                      (8.1.10)

or

2 cos {ka/2} = 2k sin {ka/2}                          (8.1.11)
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Overall Solution (cont)

 From (8.1.10) and (8.1.11), the overall solution for 
requires: 

tan {ka/2} = -k/ and tan {ka/2} = /k

 Only discrete values of k are allowed - quantisation  

 The solution also requires:

A2/B2 = -[( + ik)/( - ik)] exp{+ika}

 It can be shown that:

A2/B2 = -1   if tan {ka/2} = -k/

A2/B2 = +1   if tan {ka/2} = /k

 Hence the solution in region 2 is:

2 = A2 [ exp{ikx} ± exp{-ikx} ]

i.e. 2 = 2A2 cos{kx}  or 2iA2 sin{kx}
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Summary: Finite Well Solutions

 Solutions:

1   exp{x}

2   sin{kx}, cos{kx}

3   exp{-x}

 Parameters:

 = √{ 2m (-E) / ħ }

k = √{ 2m (V0 + E) / ħ }

 Continuity of , d/dx at boundary

 Harmonic form inside well |x| ≤ a/2

 Dying exponentials outside well |x| > a/2

 Probability density ||2 extends beyond edge of potential

 Discrete set of (bound state) wave functions
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Finite Well Energy Levels

 What are the allowed energy levels ?

 Conditions:

tan {ka/2} = -k/ and tan {ka/2} = /k

with

k = √{ 2m (V0 + E) / ħ }   and k/ = √{ (V0 + E) / -E } 

 Solution of complicated equations:

tan { (√{2m (V0 + E) / ħ}) a/2 } = -√{ (V0 + E) / -E } 

and

tan { (√{2m (V0 + E) / ħ}) a/2 } = √{ -E / (V0 + E) }

 Must solve graphically for E (<0)

 A finite number of discrete (quantised) energies are 
found
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Graphical Solutions
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Finite/Infinite Well Energies

 The energy levels for 
an electron in an 
infinite potential well 
of width 0.39 nm are 
shown to the left

 The energy levels for 
an electron in a finite 
potential well of depth 
64 eV and width 0.39
nm are shown to the 
right
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The Deuteron

 The deuteron is a weakly
bound system consisting 
of a proton and neutron

 Since the ground state 
energy level is at -2 MeV
in a finite well -35 MeV
deep, the exponential tail 
is rather long !

n-p separation
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8.2 Harmonic Oscillator (HO)

 Potential energy:

V(x) = ½Kx2

 Classical physics:

F = -dV/dx = -Kx

 Simple Harmonic 
Motion

 Particle undergoes harmonic oscillation about x = 0 with 
an angular frequency:

 = √{K/m}

 Hence potential can be written:     V(x) = ½m2x2

time independent
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Harmonic Oscillator

 Time independent Schrödinger equation (7.10):
-{ħ2/2m} d2

/dx2 + ½m2x2
 = E 

 Rewrite:
d2
/dx2 + {2mE/ħ2}  - {m2


2x2/ħ2}  = 0

 Or:
d2
/dx2 + β  - {x2/4}  = 0        Hermite‘s equation

 Where:
β = 2mE/ħ2 and 

2 = ħ/mω
 General solution:

(x) = exp{-x2/22} (a0 + a1x + a2x2 + …)

Gaussian                 series
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Harmonic Oscillator Solutions

 We expect a discrete set of solutions which do not 
diverge as x  ∞

 The series must not be infinite

It must be a polynomial

 There is no divergence if:


2β = 2n + 1   where n is a positive integer

 Solutions for each value of n, n give quantisation

n = 0       0 = c0 exp{-x2/22}

n = 1        1 = c1 (x/) exp{-x2/22}

n = 2        2 = c2 (2x2/2 – 1) exp{-x2/22}
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HO Quantised Energies
 What are the energies ?

 Now:


2β = 2n + 1 where n ≥ 0

 Hence:

{ħ/m} {2mE/ħ2} = 2n + 1

 Or:

E = (n + ½) ħ

 A set of equally spaced 
energy levels arises

 Energy separation: 

ΔE = ħ

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 159

Diatomic Molecule

 The potential energy V(r)
between two atoms as a 
function of separation r 
approximates the HO 
potential

 V(r) has a minimum at 

r = r0

 Application of Harmonic Oscillator potential

 r < r0 : repulsion due to nucleus-nucleus

 r > r0 : attraction due to electron-nucleus

r0
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Diatomic Molecule

 Close to r = r0 make a Taylor expansion and keep only the 
leading terms in r – r0:

V(r) = V(r0) + (r – r0) dV/dr + ½(r – r0)2 d2V/dr2

 Since r = r0 is a minimum:

dV/dr = 0

 Hence:

V(r) = V(r0) + ½(r – r0)2 d2V/dr2

 This is a harmonic potential with:

K = d2V/dr2 and  = √{K/m}

 Therefore vibrational (harmonic) excitations of diatomic 
molecules occur with energies:

E = (n + ½) ħ + V(r0)
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Diatomic Molecule: NaCl

 Potential:

V(r) = {-e2/4πε0} {1/r – β/rn}

attractive electron-nucleus     repulsive nucleus-nucleus

 Interatomic distance: r0 = 2.81 x 10-10 m

 Constant: n = 9.4

 Differentiate at r0 (minimum)

dV/dr = {-e2/4πε0} {-1/r0
2 + nβ/r0

n+1} = 0

 Hence: 

β = r0
n-1/n

 Also:

d2V/dr2 = {-e2/4πε0} {2/r0
3 + n(n+1)β/r0

n+2} = K

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 162

Diatomic Molecule: NaCl

 Hence:

K = {-e2/4πε0} {(1 – n)/r0
3} 

 Data:

e = 1.6 x 10-19 C

ε0 = 8.85 x 10-12 F m-1                                    K = 87.3 J m-2

r0 = 2.81 x 10-10 m

n = 9.4

 The vibrational energy is now given by

ħ = ħ√{K/m}

 Note that m is the reduced mass of NaCl

m = m(Na).m(Cl) / {m(Na) + m(Cl)}

~ 23 x 37 / {23 + 37} ~ 14 amu
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Diatomic Molecule: NaCl
 Data:

ħ = 1.06 x 10-34 Js                               ħ = 6.44 x 10-21 J

m (NaCl) = 14 x 1.67 x 10-27 kg                  = 0.040 eV

 This corresponds to an 
infrared photon that can be 
absorbed or emitted as the 
molecule changes between 
vibrational levels

 Other types of excitation 
are also possible:

Rotational (microwave)

Electronic (optical or UV)
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8.3 Zero Point Energy

 Classical physics of a bound particle:

No energy quantisation

minimum energy = 0

 Quantum physics of a bound particle:

Energy quantisation

Minimum energy not zero

 For an infinite square well:

E1 = h2/8ma2

 For a harmonic oscillator:

E0 = ½ħ

 This minimum value of energy is called the ―zero point‖ 
energy
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Zero Point Energy

 If a particle is confined to be roughly in the range 

-a/2 ≤ x ≤ +a/2

then the uncertainty in its position is:

Δx ~ a

 From the Uncertainty Principle, its momentum cannot be 
specified to better than

Δp ~ ħ/a

 Therefore the momentum has to be at least this value:

p ≥ Δp ~ ħ/a

 The corresponding energy is then:

p2/2m = E ≥  ħ2/2ma2

 Zero point energy arises from quantum physics !
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Motion in Various Potentials

 Also on VITAL !

 1D motion in various wells

 2D motion in a box

 2D harmonic oscillator
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8.4 3D Bound States

 Example: infinite potential well V(x,y,z)

|x| ≤ a/2                               |x| > a/2

|y| ≤ a/2      V(x,y,z) = 0 |y| > a/2     V(x,y,z)  ∞

|z| ≤ a/2                               |z| > a/2

 The time dependent Schrödinger equation is now:

-{ħ2/2m} 2
 + V = iħ ∂/∂t

where:


2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 

 The time independent Schrödinger equation is:

-{ħ2/2m} 2
 + V = E

 Now a partial differential equation
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3D Infinite Well

 Outside the box: V  ∞ so:

 = 0

 Inside the box:

-{ħ2/2m} (∂2
/∂x2 + ∂2

/∂y2 + ∂2
/∂z2) = E

 Physics:

motion in x is independent of…

motion in y is independent of…

motion in z
Intuitive assumption to get trial solution

 Hence try a solution of the form:

 = x(x) y(y) z(z)
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3D Infinite Well

 Now:

∂2
/∂x2 = yz d2

x/dx2   ,

∂2
/∂y2 = xz d2

y/dy2 ,

∂2
/∂z2 = xy d2

z/dz2

 Substitute into Schrödinger equation and divide through 
by xyz :

-{ħ2/2m} {1/x} {d2
x/dx2} function only of x

-{ħ2/2m} {1/y} {d2
y/dy2}          function only of y  

-{ħ2/2m} {1/z} {d2
z/dz2}          function only of z

= E  = constant

 Each of the three ―degrees of freedom‖ – motion in x, in 
y, in z represent independent free particle motion
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 Only possible scenario:

-{ħ2/2m} {d2
x/dx2} = Exx  ,

-{ħ2/2m} {d2
y/dy2} = Eyy   ,

-{ħ2/2m} {d2
z/dz2} = Ezz

 The total energy is:

E = Ex + Ey + Ez

 The solutions are already known:

x  sin{nxπx/a} , y  sin{nyπy/a} , z  sin{nzπz/a}

 The total energy is thus:

E = {h2/8ma2} (nx
2 + ny

2 + nz
2)

 With:

nx ≥ 1 , ny ≥ 1 , nz ≥ 1

3D Infinite Well Solutions
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Energy Degeneracy

Energy              nx ny nz

{3h2/8ma2}           1        1       1          one state

{6h2/8ma2}           2        1       1
{6h2/8ma2}           1        2       1 one energy, three states

{6h2/8ma2}           1         1       2

{9h2/8ma2}           2        2       1
{9h2/8ma2}           2        1       2        one energy, three states

{9h2/8ma2}           1        2       2

 Degeneracy arises since nx ny nz can be combined in 
several ways to give same value of (nx

2 + ny
2 + nz

2)
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3D Harmonic Oscillator

 Potential energy:

V(x,y,z) = ½Kx2 + ½Ky2 + ½Kz2 same force constant K

 Time dependent Schrödinger equation:

-{ħ2/2m} {∂2
/∂x2}

-{ħ2/2m} {∂2
/∂y2}

-{ħ2/2m} {∂2
/∂z2}

+½K(x2 + y2 + z2) = E

 Try solution with independent x y z motion:

-{ħ2/2m} {1/x} {d2
x/dx2} + ½Kx2            function only of x

-{ħ2/2m} {1/y} {d2
y/dy2} +½Ky2 function only of y  

-{ħ2/2m} {1/z} {d2
z/dz2} +½Kz2 function only of z

= E  = constant
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3D Harmonic Oscillator

 Harmonic oscillator splits into three decoupled equations 
of linear harmonic form

 Solution for each of x y z is a solution of the 1D harmonic 
oscillator:

nx = 0 x0 = c0 exp{-x2/22}

nx = 1        x1 = c1 (x/) exp{-x2/22} etc…

 The total energy is:

E = Ex + Ey + Ez   i.e. E = (nx + ny + nz + 3/2) ħω

 With:

nx ≥ 0 , ny ≥ 0 , nz ≥ 0  and  = ħ√{K/m}

 Zero point energy:

3/2 ħ
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3D Harmonic Oscillator Degeneracy

Energy / (ħ) nx ny nz

3/2            0        0       0          one state

5/2 1         0       0
5/2 0        1        0 one energy, three states

5/2 0        0        1

7/2            1         1        0
7/2            1         0        1
7/2            0         1        1         one energy, 

7/2            2        0        0              six states

7/2            0        2        0
7/2            0        0        2
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3D Anisotropic Harmonic Oscillator

 What happens if K is different for x, y and z, i.e.:

V(x,y,z) = ½Kxx2 + ½Kyy2 + ½Kzz2    ?

 There are now three distinct frequencies associated with 
each of x y z:

x = ħ√{Kx/m} , y = ħ√{Ky/m} , z = ħ√{Kz/m} 
 The total energy is now:

E = ħ { (nx+ ½)x + (ny+ ½)y + (nz+ ½ )z }

 Example: Nilsson model to describe deformed nuclei:
 prolate/oblate shapes with x = y ≠ z
 triaxial shapes with x ≠ y ≠ z
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8.5 3D Bound States & Angular Momentum

 The time independent Schrödinger equation is:

-{ħ2/2m} 2
 + V = E

 Work in spherical polar coordinates r θ φ instead of 
Cartesian coordinates x y z :           

x = r sin{θ} cos{φ} , 

y = r sin{θ} sin{φ} , 

z = r cos{θ}
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Spherical Polar Coordinates

 It can be shown that (but not easily !):       don‘t remember


2 = {1/r2} ∂/∂r (r2 ∂/∂r)

+ {1/r2} {1/sin{θ}} ∂/∂θ (sin{θ} ∂/∂θ)

+ {1/r2} {1/sin2{θ}} ∂2/∂φ2

 For most V(r,θ,φ) the solution is complicated but…

 For solutions of the form V(r) = V(r) (central potential:
function of radial coordinate only), the solutions have 
generic features
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Angular Momentum

 The Schrödinger equation becomes:

-{ħ2/2m}  [ {1/r2} ∂/∂r (r2 ∂/∂r)

+ {1/r2} {1/sin{θ}} ∂/∂θ (sin{θ} ∂/∂θ)

+ {1/r2} {1/sin2{θ}} ∂2
/∂φ2 ] 

+ V(r) = E

 The potential energy function V(r) does not vary with θ
and φ

For non-radial motion of the particle, no
energy/momentum changes from potential to kinetic or 
vice-versa

Angular momentum is conserved (no preferred 
direction in space)
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Radial Solutions

 Decouple motion in r (radial) and motion in (θ,φ) (rotation) 
and look for a solution:

 = R(r) Y(θ,φ)
 Then:

-{ħ2/2m}  [ {Y/r2} d/dr (r2 dR/dr)
+ {R/r2} {1/sin{θ}} ∂/∂θ (sin{θ} ∂Y/∂θ)

+ {R/r2} {1/sin2{θ}} ∂2Y/∂φ2 ] 
+ V(r)RY = ERY

 Divide through by RY and multiply through by r:
-{ħ2/2m}  [ {1/R} d/dr (r2 dR/dr)            function only of r

+  {1/(Ysin{θ})} ∂/∂θ (sin{θ} ∂Y/∂θ)    function only of  

+ {1/(Ysin2{θ})} ∂2Y/∂φ2 ]                      θ φ

+ r2V(r) = r2E                            function only of r

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 183

Radial Solutions

 Rearrange:

-{ħ2/2m}  {1/R} d/dr (r2 dR/dr) + r2V(r) - r2E 

= -{ħ2/2m} [ {1/(Ysin{θ})} ∂/∂θ (sin{θ} ∂Y/∂θ) 

+    {1/(Ysin2{θ})} ∂2Y/∂φ2 ] 

= constant

 For radial motion in r :                                              (8.5.1)

-{ħ2/2m}  {1/r2} d/dr (r2 dR/dr) + [ V(r) – N/r2 ] R = ER

 For rotational motion in θ φ :               centrifugal potential

-{ħ2/2m} [ {1/sin{θ}} ∂/∂θ (sin{θ} ∂Y/∂θ)               (8.5.2)

+    {1/sin2{θ}} ∂2Y/∂φ2 ] = -NY
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Radial Solutions

 This might look horrible ! Use intuition !

 Substituting R(r) = {1/r} (r) in (8.5.1), the equation can 
be cast in the form:

-{ħ2/2m} d2
/dr2 + [ V(r) – N/r2 ]  = E 

which looks like a 1D Schrödinger equation for the ―radial 
wave function‖  = rR in a modified (central) potential 
energy function

 Similarly try to recast (8.5.2) into a form of 
Schrödinger‘s equation, namely a second order partial
differential of Y(θ,φ) equal to a number with dimension of 
energy multiplying Y(θ,φ)
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Angular Solutions

 From (8.5.1) N/r2 has dimension of energy

 So rewrite (8.5.2) as:

-{ħ2/2mr2} [ {1/sin{θ}} ∂/∂θ (sin{θ} ∂Y/∂θ)             

+    {1/sin2{θ}} ∂2Y/∂φ2 ] = -{N/r2} Y

 Now:

mr2 is just the moment of inertia () of the particle‘s 
rotation about the origin

 So we have:

-{ħ2/2} θφ
2 Y = Eθφ Y

 Form of Schrödinger equation for particle motion about 
the origin, i.e. rotation
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Summary: Particle in Central Potential

 Introduce polar coordinates r θ φ to Schrödinger 
equation:

-{ħ2/2m} 2
 + V(r)  = E 

 Conservation of angular momentum allows decoupling of 
radial and angular motion:

 = R(r) Y(θ,φ)

 Radial wave function:

 = rR radial probability density ||2

 Radial motion:

-{ħ2/2m} d2
/dr2 + [ V(r) – N/r2 ]  = E 

 Angular motion:

-{ħ2/2} θφ
2 Y(θ,φ) = -{N/r2} Y(θ,φ) = Eθφ Y
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Radial Energies

 Radial solution – ask a mathematician:

-{ħ2/2m} d2
/dr2 + [ V(r) – N/r2 ]  = E 

 Solution in detail depends on V(r)

 Generic results:

 N depends on ℓ (angular momentum)

 Bound states quantised:

E = Enℓ

 n integer ≥ 1, ℓ integer ≥ 0

 (n,ℓ) label ―energy sub-shell‖

 n labels an ―energy shell‖
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Angular Energies
 Rotational solution – ask a mathematician

 Spherical Harmonics: 

Yℓm(θ,φ)

ℓ integer   0, 1, 2,…

m integer: 

-ℓ, -ℓ+1,… 0,… ℓ-1, ℓ

 Legendre Polynomials

Yℓm(θ,φ) = Pℓ(cos{θ})exp{imφ}

 Quantised energy of rotation:

Eθφ = {ℓ(ℓ+1)ħ2} / {2}                -N = - {ℓ(ℓ+1)ħ2} / {2m}

 Energy degeneracy of {2ℓ+1}, no dependence on m

 Quantum physics of rotation

ℓ = 10, m = 5
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Nuclear Rotational Band

 Most nuclei are prolate (rugby ball shape) and can rotate

 Gamma rays are emitted between levels of a ―rotational 
band‖ taking away 2ħ of spin each (―superdeformation‖ in 
nuclei discovered by Liverpool physicists at Daresbury !)

 Quantised energy of 
rotation:

E = {I(I+1)} ħ2/2

 Gamma ray energy

ΔE = {2I-1} ħ2/

 Gamma ray spacing

Δ2E = 4 ħ2/

= constant
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Gammasphere (Gamma Ray Spectrometer)

 The Liverpool Nuclear Physics Group investigates ―high 
spin states‖ in nuclei using gamma ray spectroscopy
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Rules for Central Potentials
 Particle energy is quantised according to:

E = Enℓ n ≥ 1,  ℓ ≥ 0

 ℓ specifies the quantised angular momentum2 (L2) of the  

particle:

L2 = ℓ{ℓ+1} ħ2

 m (-ℓ, -ℓ+1,… 0,… ℓ-1, ℓ) specifies the projection Lz of L
on a fixed direction z

Lz = m ħ 

 Common central potentials are:

free particle          V(r) = 0

constant                 V(r) = constant

harmonic oscillator V(r) = ½Kr2

 ―Particle in a box‖ is not a central potential
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Quantised Angular Momentum

 For angular motion energy quantisation:

Eθφ = {ℓ(ℓ+1)ħ2} / {2}             ℓ = 0, 1, 2,…

where  is the moment of inertia

 Hence:

ℓ(ℓ+1)ħ2 = (angular momentum)2

 Free rotation  angular motion

 Quantised energies of rotation  quantised angular 
momentum:

√{ℓ(ℓ+1)} ħ

 Remember for the free linear motion of a particle, 
quantised energies only occur if confined in a box

 Quantised momentum p = ħk = nπħ/a
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8.6 3D Harmonic Oscillator Revisited
 Harmonic oscillator potential:

V(x,y,z) = ½K{x2 + y2 + z2}

 If force constant is spherically symmetric V is central:

V(r) = ½Kr2

 Therefore the angular part of the wave function is a set 
of spherical harmonics corresponding to quantised angular 
momentum:

L2 = ℓ{ℓ+1} ħ2

 Energy quantisation is determined by the radial equation: 

-{ħ2/2m} d2
/dr2 + [ ½Kr2 – {ℓ(ℓ+1)ħ2} / 2mr2 ]  = E 

 Energies:

Enℓ  E = (n + 3/2) ħ n ≥ 0 integer

n = 0   ℓ = 0 , n = 1   ℓ = 1 , n = 2   ℓ = 0,2 …              parity
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Harmonic Oscillator Degeneracy

Energy / (ħ) n        ℓ       m
3/2            0        0       0          one state

5/2 1         1       -1
5/2 1         1        0 one energy, three states

5/2 1         1       +1

7/2            2        0        0
7/2            2        2       -2
7/2            2        2       -1          one energy, 

7/2            2        2        0              six states

7/2            2        2       +1
7/2            2        2       +2
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HO Degeneracy

 An identical energy level structure emerges using the 
radial solution as using the x y z approach

as it must !

 States used in the x y z solution are linear combinations 
of states in the r θ φ solution

the number of states is the same

 Subshells (n,ℓ) within a shell n are degenerate

accidental degeneracy
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8.7 Hydrogen Atom
 One electron in bound state with a proton with central 

potential:

V(r) = {-e2 / 4πε0r}       Coulomb potential

 Schrödinger equation:                                              (8.7.1)

-{ħ2/2} θφ
2 Ylm(θ,φ) = {ℓ(ℓ+1)ħ2 / 2} Ylm(θ,φ) 

 And:

-{ħ2/2m} d2
/dr2                                                                      (8.7.2)

+ [ {-e2 / 4πε0r} – {ℓ(ℓ+1)ħ2} / 2mr2 ]  = E 

 Energy sub-shell structure:

Enℓ = {-me4 / 32π2ε0
2ħ2} {1/n2}

n = 1    ℓ = 0

n = 2   ℓ = 0, 1             n = principal quantum number

n = 3   ℓ = 0, 1, 2
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Hydrogen Atom Degeneracies

Energy / {me4 / 32π2ε0
2ħ2} n        ℓ       m     degeneracy

-1                       1        0       0             one

-1/4 2        0       0

-1/4                     2        1        ±1,0 four

-1/9                     3        0       0

-1/9                     3        1        ±1,0        nine

-1/9                     3        2       ±2,±1,0

 Sub-shells within an energy shell are degenerate
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n ℓ Quantum Numbers

 Principal quantum number n is written as a digit

 Angular momentum quantum number ℓ is written as:

ℓ = 0       s ―sharp‖

ℓ = 1        p ―principal‖

ℓ = 2       d ―diffuse‖

ℓ = 3       f ―fundamental‖

ℓ = 4       g

ℓ = 5       h now alphabetical

ℓ = 6        i
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Rydberg Constant

 Energy level structure is often 
written in terms of the Rydberg 
constant R :

En = - R hc / n2

 where:

R = {me4} / {8ε0h3c} 

= 13.6 eV/hc

 So:

En = -13.6 / n2 electron-volt
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Hydrogen Atom Energies

En = {-me4 / 32π2ε0
2ħ2} {1/n2} = -13.6 eV / n2
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Hydrogen Atom Spectroscopy
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Selection Rules

 Transitions can only occur 
between states that 
differ in ℓ by 1, i.e.

Δℓ = ± 1
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Where is the Electron ?

 Electron probability density:

||2 = |RY|2

 Probability of finding the electron in a small region of the 
atom volume:

r2 dr dΩ = r2 dr d(cosθ) dφ Ω = solid angle

is:

|Rnℓ(r) Yℓm(θ,φ)|2 r2 dr dΩ

= |rRnℓ(r)|2 |Yℓm(θ,φ)|2 dr dΩ

= |nℓ(r)|2 |Yℓm(θ,φ)|2 dr dΩ

 Ask a mathematician !



52

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 205

Radial Dependence

 Radius of first Bohr orbit:

a0 = 4πε0ħ2 / me2   = 0.0529 nm

 Radial wave functions Rnℓ :

R10 = 2 {1/a0}3/2 exp{-r/a0}

R20 = [1/2√{2}] {1/a0}3/2 {2 - r/a0} exp{-r/a0}

 Radial probability density:

P(r) = |nℓ|2 = |rRnℓ|2

 As r  0 :

nℓ = rRnℓ  0

Rnℓ=0  0           s wave density

Rnℓ≠0  0           p, d,… wave density
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Radial Distributions: ℓ = 0

s waves

n = 1

n = 2

n = 3
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Radial Distributions: n = 2

ℓ = 0

ℓ = 1

2s

2p
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Radial Distributions: n = 3

ℓ = 0

ℓ = 1

ℓ = 2

3s, 3p, 3d

H atom applet (also on VITAL)


