

PHYS255 Timetable 2011

Some Text Books
 A.C. Phillips "Introduction to Quantum Mechanics" R. Eisberg & R. Resnick "Quantum Mechanics of Atoms, Molecules, Solids, Nuclei & Particles" E. Zaarur, Y. Peleg, R. Pnini "Quantum Mechanics" Schaum's Easy Outlines D. McMahon "Quantum Mechanics Demystified" available at the Liverpool e-brary: http://www.liv.ac.uk/library/electron/db/ebrary.html
07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 3

Basic Ide	eas of Quantum Mechanics	
A general intro physics is avail	duction to basic concepts of quantum able on VITAL:	
	QMIntro.pdf	
The mathematic present course (PHYS255), wh mechanics are PHYS361 modu	ical formalism is also introduced for the based on Schrödinger's wave mechanics ile more general formalisms of quantum also introduced, useful for next year's le.	
07/09/2011 P	HYS255: Quantum & Atomic Physics - E.S. Paul	4

PHYS255: Topics		
 1. Int 2. Esset 3. Fore 4. Que 5. Wave 5. Wave 6. Parte 7. Parte 8. Wave 9. Wave 10. Atomic 	roduction ential Mathematics ces and Potential Energy antisation ve Particle Duality ticle Wave Function ticle Wave Equation ve Dynamics of Particles: Bound States ve Dynamics of Particles: Scattering omic Structure	
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	5

The Birth of Quantum Mechanics	5
Quantum Mechanics is the theory of atomic and subatomic systems	
At the end of the 19 th century, classical physics had problems explaining the transfer of energy between radiation and matter (blackbody radiation)	1 1
It was solved by Planck who introduced discrete que of energy - the energy exchange is not continuous	inta
Quantum means "how much" or "finite amount of sor quantity"	ne
07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul	8

- The 1903 Nobel Prize was awarded for the discovery of nuclear radioactivity (Becquerel, Curie, Curie)
- Previously, physical phenomena were thought to be deterministic (Newton) and it was assumed that the motion of an object could be predicted with unlimited accuracy, given the initial conditions
- Radioactivity is different the decay of each individual nucleus cannot be precisely predicted, but its probability of decay could be analysed on the statistical behaviour of many nuclei

07/09/2011

PHYS255: Quantum & Atomic Physics - E.S. Paul

The Rise of the Quantum

- Einstein (1905) showed that light acted as if it were "grainy" and used the quantum approach to explain the photoelectric effect - energy is exchanged by discrete photons
- Niels Bohr (1913) incorporated the quantum into his model of the atom and discrete electronic energy levels
- The quantum began to appear in other areas of physics, then in chemistry and other sciences
- A full theory of Quantum Mechanics was developed in 1927

10

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul

What is Quantum Mechanics? Quantum Mechanics is the name given to a system of equations which must be used instead of Newton's Laws of Motion in order to calculate the behaviour of atoms, electrons and other ultimate particles of matter Newton's laws work well for the motion of planets, but not electrons in an atom

Quantum Mechanics gives very nearly the same answers as Newton's classical laws, except when applied to "small" systems

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul

When is a System "Small" ?				
How do we distinguish between a "small" (quantum) and a "large" (classical) system?				
> Planck's constant $\hbar = h/2\pi$ has the units of "action", i.e.				
length X momentum or time X energy				
> The "size" of a system is judged by the typical action				
> For an electron in an atom, the action ≈ ħ ("small" or quantum), while in an electronic device, the action » ħ ("large" or classical)				
07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 12				

Measurement

- In classical physics, the act of measurement need not effect the object under observation and the properties of a classical object can be specified with precision
- This is not the case in quantum physics! Measurement plays an active and disturbing role - quantum particles are best described by the possible outcomes of measurement
- Quantum Mechanics mathematically includes the effect of measurement on a system (Uncertainty Principle)
- Quantum Mechanics challenges intuitive notions about reality, such as whether the property of a particle exists before a measurement is made on it (Schrödinger's cat)
 PHYS255: Quantum & Atomic Physics - E.S. Paul

Is Quantum Mechanics Correct?

- > Albert Einstein never accepted the indeterministic nature of Quantum Mechanics: "God does not play dice"
- Niels Bohr stated: "Anyone who is not shocked by quantum theory has not understood it"
- > Nevertheless, despite its philosophical difficulties, no prediction of quantum theory has ever been disproved!
- Quantum Mechanics is the founding basis of all modern physics: solid state, molecular, atomic, nuclear and particle physics, optics, thermodynamics, statistical mechanics... ...chemistry, biology, astronomy, cosmology

|--|

	2. Essential Mathematics	
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	15

Complex Exponentials				
	exp{0} = 1	(x=1, y=0)		
	exp{iπ/2} = i	(x=0, y=1)		
	exp{iπ} = -1	(x=-1, y=0)	Euler equation	
	$exp{i3\pi/2} = e$	exp{-iπ/2} = -i	(x=0, y=-1)	
> Draw the vectors !				
07709/2011	PHY 5255: (Juantum & Atomic Physics	- E.S. Paul	18

Wave ≻ Wave travell	eforms (de Broglie Wave) ing in the positive x direction	
	ψ(x) = A exp{ikx}	
> Wave travell	ing in the negative x direction	
	$\psi(x) = A \exp{-ikx}$	
> Relation between sines, cosines and complex exponentials		
	exp{iθ} = cosθ + i sinθ	
	cosθ = [exp{iθ} + exp{-iθ}] / 2 sinθ = [exp{iθ} - exp{-iθ}] / 2i	
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	20

> Differentic	Differentials al of waveform sin 0 :	
≽ d/dθ { s	$\sin \theta$ = $\cos \theta$ = $\sin \{\theta + \pi/2\}$	phase +90°
> Differentic	al of wavevector exp{iθ}:	
≻ d/dθ { e	$exp{i\Theta} = i exp{i\Theta} = exp{i\pi/2} exp$ $= exp{i(\Theta + \pi/2)}$	{iθ} phase +90°
> d²/dθ² {	$\{ exp\{i\theta\} \} = i^{2} exp\{i\theta\} = -1 exp\{i\theta\}$ $= exp\{i\pi\} exp\{i\theta\}$ $= exp\{i(\theta + \pi)\}$	phase +180°
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	22

Observ	ables and Operators	
We can associate position or momen	an operator with any observable, e.g. tum	
The eigenvalues of results of the obs	^f the operator represent the possible ervation	
However, for smal disturb the (quant	l systems the act of observation can rum) system	
Hence for two suc depends on the or	cessive measurements, the result der of observation	
07/09/2011 PHy52	55: Quantum & Atomic Physics - E.S. Paul	25

Eigenvalue Equation

> To each operator $\hat{A}(x,\partial/\partial x)$ belong a set of numbers a_n and functions $u_n(x)$ defined by the equation

 $\hat{A}u_n(x) = a_n u_n(x)$

- > Here a_n is an <u>eigenvalue</u> and $u_n(x)$ the corresponding eigenfunction
- > The eigenfunctions of an operator are those special functions which remain unaltered under the operation of the operator, apart from multiplication by the eigenvalue

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul

Mutua	Mutual Disturbance		
The commutator of the and C is therefore, in	e corresponding operators, e.g. Â general, non-zero, [Â,Ĉ]≠0		
The commutator gives disturbance of the tw	a measure of the mutual o measurements		
> The magnitude of the	disturbance is related to ħ		
Thus Planck's constant accuracy to which we properties of a system particle	gives a fundamental limit of the can measure two (non-commuting) n, e.g. position and momentum of a		
07/09/2011 PHY 5255: Qu	antum & Atomic Physics - E.S. Paul	28	

The Schrödinger Equation

> The possible energy levels of a system are the eigenvalues of the Hamiltonian operator

$$\hat{H}u_E(x) = E_n u_E(x)$$

- \succ This equation is solved subject to boundary conditions and the fact that the eigenfunctions $u_{\text{E}}(x)$ must be finite everywhere
- The choice of the potential energy function V(x) defines the system

34

07/09/2011 PHY S255: Quantum & Atomic Physics - E.S. Paul

Quantisation: Summary	
> Ultraviolet Catastrophe	
Energy cannot be subdivided into ever smaller "pieces" - quanta	
Energy is quantised: E = nhv (n integer)	
> Photoelectric Effect	
Electromagnetic radiation (light) of frequency v consists of a "stream" of photons each of energy hv	
> Atomic Spectra	
Consist of discrete frequencies \mathbf{v}_i equal to the energy released in one photon as the atom de-excites from higher to lower quantised energy states	
 Classical physics, with no requirement of energy quantisation, fails to describe these phenomena 	
07/09/2011 PHY S255: Quantum & Atomic Physics - E.S. Paul 6	58

What Is A Particle? > Finite volume > Energy contained within mass > Described by classical physics > Must obey laws of energy, charge and momentum conservation 07/09/2011

Equivalence		
> Simple equiv	alence, particle-wave duality	
	1 1	
Energy	$\int \{c^2 p^2 + m^2 c^4\} \Rightarrow h v$	
Momentum	$p \rightarrow h/\lambda$	
Frequency	E/h ← v	
Wavelength	h/p ← λ	
Theory	photon ← quantised electromagnetis	sm
	electron \Rightarrow ?	
	neutron \Rightarrow ?	
> Perceptions	in terms of human experience/observation	
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	88

Wave Particle Duality: Summary
Certain phenomena, e.g. reflection, refraction can be understood in term of light consisting of <u>waves</u> or <u>particles</u>
Certain phenomena, e.g. interference, diffraction, polarisation can only be understood in term of light consisting of <u>waves</u> and not particles
However the photoelectric effect can only be understood in term of light consisting of discrete particles (photons, Newton's corpuscles) and not waves
We need to consider <u>both</u> aspects, depending on what we "are looking at"
07/09/2011 PHY S255: Quantum & Atomic Physics - E.S. Paul 89

Electromagnetic Wave			
A plane harmonic EM wave $\underline{E} = \underline{E}_0 \cos (kx - \omega t)$ is not equal to one photon!			
> Wave-particle duality is so far a qualitative concept			
> It allows us to understand			
It does not (yet) allow us to calculate or predict			
 We need a theory in which the representation of a particle as a wave yields predictions for the behaviour o particles 	of		
7/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul	96		

C

What is Ψ ?

- > So far, all wave motion has been recognised as a periodic variation of a (real) physical observable
- > What is the physical observable corresponding to Ψ ?
 - There isn't one !
 - > One cannot say that a particle is a wave phenomenon of any particular physical observable
 - > A particle wave-function is a construct in a theory with which we are able to calculate and predict in new ways

98

 \succ The real physical quantity is the "probability density" $|\Psi|^2$

07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul

Indeterminism in the Real World	
 Born (1927) introduced the probabilistic interpretation of Quantum Mechanics 	
Quantum Mechanics only allows us to calculate the probability of a particle being found at a specific position in space	
> We can never specify exactly where the particle is	
This can be generalised to other properties, such as momentum	
07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul	100

	7. Particle Wave Equation		
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	101	1

	Simplest Wave Equ	lation
Look for has soluti	the simplest linear different on Ψ and satisfies ω = ħk²/2	ial equation which m
Ψ = A	exp{ i(kx - wt)}	
6/46	$k = ikA \exp \{i(kx - \omega t)\}$	
δ ² Ψ/2	$x^{2} = -k^{2}A \exp\{i(kx - \omega t)\}$	(quadratic in k)
> And		
94\9.	$t = -i\omega A \exp \{ i(kx - \omega t) \}$	(linear in w)
> Combine:		
і д Ψ/	$\partial t = \{-\omega/k^2\} \partial^2 \Psi/\partial x^2$	
> Or using l	Eq. 7.2 (i.e. ħω = (ħk)²/2m):	
	ih $\partial \Psi / \partial t = {-h^2/2m} \partial^2 \Psi / \partial x$	< ² (7.3)
07/09/2011	PHYS255: Quantum & Atomic Physics - E	.S. Paul 106

S	chrödinger's Equation	
> Equation (7.7)) is known as <u>Schrödinger's</u> equation	
> It is not prov	en, only postulated !	
When the pot V(we know it wo	rential is constant (x) = V ₀ orks	
Solutions of S mathematical	Schrödinger's equation are usually ly tricky !	
> Now for some	e examples	
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	116

Infinite Square Well Potential > Apply the Schrödinger equation in regions 1 and 3 ih $\partial \Psi / \partial t = -\{h^2/2m\} \partial^2 \Psi / \partial x^2 + V(x) \Psi$ > Or, dividing by V(x): $\{i\hbar/V(x)\} \partial \Psi/\partial t = -\{\hbar^2/2mV(x)\} \partial^2 \Psi/\partial x^2 + \Psi$ > But 1/V(x) = 0, hence Ψ=0 (7.8)> Apply the Schrödinger equation in region 2 with V(x) = 0iħ $\partial \Psi / \partial t = -{\hbar^2 / 2m} \partial^2 \Psi / \partial x^2$ > Confining box does not change with time, hence we expect x dependence of Ψ to be independent of t $\Psi(x,t) = \psi(x) \theta(t)$ 07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 118

	_		
Physics of the Solutions			
> Particle probability density $ \Psi ^2$ is confined (non-zero) only inside the box ($0 \le x \le a$) classical physics			
Particle more likely to be found at some values of x (between 0 and a) than at others			
$ \Psi ^2 \propto \sin^2\{n\pi x/a\}$ probability density			
The wave function Ψ(x,t) = ψ(x) exp{-iωt} has a time dependence exp{-iωt} time dependence of a "stationary state"			
> Time dependence of a Stationary state			
same as that of a free particle wave function			
07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 12	24		

	Quantised Energies		
Using De B energies of	roglie E = h f the particl	v = $\hbar \omega$ we find that the allowed e in a box are:	
E	= {ħ²π²/2ma	2 n ² = {h ² /8ma ² } n ²	
 Energies of a particle in a confined region (bound state) are <u>quantised</u> (E « n²))
n =	= 1 E	E = h²/8ma²	
n =	= 2 E	= 4h²/8ma²	
n =	= 3 E	= 9h²/8ma²	
n =	= 4 E	= 16h²/8ma²	
07/09/2011	PHYS255: Qua	antum & Atomic Physics - E.S. Paul	125

Time I	Independent Schrödinger Equ	uation
≻ We fin	d that: ħω exp{-iωt} ψ(x) = -{ħ²/2m} exp{-iωt} δ²ψ/ + exp{-iωt} V(x) ψ(x)	∂x²
> Cancel	ling exp{-iwt} this can be rewritten as: hw $\psi(x) = -{h^2/2m} \partial^2 \psi/\partial x^2 + V(x) \psi(x)$	
> Or:	$\frac{E\psi(x)=-\{\hbar^2/2m\}\delta^2\psi/\deltax^2+V(x)\psi(x)\}}{\delta^2\psi/\deltax^2+V(x)\psi(x)}$	(7.10)
≻ This is	the time-independent Schrödinger equation	n
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	127

V(x) is not constant	
See Tutorial 2, Question 2	
 If V(x) is <u>non-uniform</u> and <u>non-zero</u>, the "stationary" (time independent) wave-function may assume a Gaussian form 	
$\Psi(x,t) = A \exp \{-x^2/(2\sigma^2)\} \exp \{-i\omega t\}$	
i.e. it has spatial extent related to σ – it is therefore localised in space	
The particle is not free and a unique value of momentum cannot be assigned to it example: Harmonic Oscillator	
07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 12	28

Part	icle Wave Equation: Summa	ıry
The wave influence solution of	e function $\Psi(x,t)$ of a particle under the of the potential energy function V(x,t) i of the Schrödinger equation	is the
it	h $\partial \Psi / \partial t = -{\hbar^2 / 2m} \partial^2 \Psi / \partial x^2 + V(x,t) \Psi$	
which m	atches external <u>boundary conditions</u>	
If V(x,t) independ	⇒ V(x), i.e. the potential energy is time ent, then Ψ is <u>stationary</u>	
Ψ	$(x,t) = \psi(x) \exp{-i(E/\hbar)t}$	Ε=ħω
and $\psi(x)$) is a solution of the time independent	
Schrödi	nger equation	
A time in a particle particle	dependent potential energy V(x) which <u>lo</u> e yields discrete <u>quantised</u> energies of th	ocalises 1e
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	133

Wave Dynamics: Bound States					
We have already considered a particle in an infinitely deep potential well					
> The particle i	s <u>confined</u> in a <u>bound state</u>				
> The energy of the particle is <u>quantised</u>					
> Next consider a potential with a finite depth					
> Finite square well potential					
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	136			

Finite Square Well				
≻ In regi hence	on 2 with V = -V ₀ : -{ħ²/2m} δ²ψ/δx²+ (-V ₀)ψ=E ψ -{ħ²/2m} δ²ψ/δx²=(E + V ₀) ψ	T + V = E		
> Try a s	olution of the form: $\psi_2 = A_2 \exp{ikx} + B_2 \exp{-ikx}$			
with constants A ₂ , B ₂ and where k is now:				
07/09/2011	<mark>k = √{ 2m (E + V₀) } / ħ</mark> PHYS255: Quantum & Atomic Physics - E.S. Paul	140		

Matchi	ng Ψ at Sharp Changes in V	
The potentia regions 1 - 2	ll V changes abruptly at the intersections o and regions 2 - 3	f
The wave fur these bounded	nction $oldsymbol{\psi}$ must be smooth (continuous) acros aries	S
The derivative smooth acros	ve of the wave function $d\psi/dx$ must also be as these boundaries	2
> Why ?> It works !> Seen in all	l other wave phenomena	
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	144

Overall Solution (cont)

Regions 1-	2: x = -a/2					
> Continuity	νofψ	(8.1.6)				
$A_1 \exp \{$	$-\alpha a/2$ = A ₂ exp{-ika/2} + B ₂ exp{+ika/2}					
> Continuity	<mark>γ of</mark> dψ/dx	(8.1.7)				
$\alpha A_1 \exp (\alpha A_1)$	$\alpha A_1 \exp \{-\alpha a/2\} = ikA_2 \exp\{-ika/2\} - ikB_2 \exp\{+ika/2\}$					
➤ Regions 2.	-3: x = +a/2					
> Continuity	ν of ψ	(8.1.8)				
A ₂ exp {	$+ika/2$ + B ₂ exp{-ika/2} = B ₃ exp{- $\alpha a/2$ }					
> Continuity	<mark>∕of</mark> dψ/d×	(8.1.9)				
ikA ₂ exp	$+ika/2$ - $ikB_2 \exp{-ika/2} = -\alpha B_3 \exp{-ika/2}$	xa/2}				
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	146				

Overall Solution (cont)				
 > Eliminate (α - ik) > Eliminate (α + ik) > Solution: > Or equat 	A ₁ from (8.1.6) and (8.1.7): A ₂ exp{-ika/2} = -(α + ik)B ₂ exp{+ik B ₃ from (8.1.8) and (8.1.9):) A ₂ exp{+ika/2} = -(α - ik)B ₂ exp{-ik A ₂ = B ₂ = 0 (pointless !) ions consistent with same unique ra	<a 2}="" <a=""> <a> <a><a><a><a><a><a><a><a><a><a><a><a><a><a><a< th=""></a<>		
$-\lfloor(\alpha + \kappa)/(\alpha - \kappa) = \exp\{+ \kappa\alpha\}\lfloor(\alpha + \kappa)/(\alpha - \kappa) = \exp\{- \kappa\alpha\}$ > This reduces to:				
2αi	sin {ka/2} = -2ik cos {ka/2}	(8.1.10)		
or 2α c	cos {ka/2} = 2k sin {ka/2}	(8.1.11)		
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	147		

Overall Solution (cont)					
From (8.1.10) and (8.1.11), the overall solution for requires;					
$\tan \{ka/2\} = -k/\alpha$ and $\tan \{ka/2\} = \alpha/k$					
> Only discrete values of k are allowed - quantisation					
> The solution also requires:					
$A_2/B_2 = -[(\alpha + ik)/(\alpha - ik)] \exp\{+ika\}$					
> It can be shown that:					
$A_2/B_2 = -1$ if tan {ka/2} = -k/ α					
$A_2/B_2 = +1$ if $\tan \{ka/2\} = \alpha/k$					
> Hence the solution in region 2 is:					
$\psi_2 = A_2 [exp{ikx} \pm exp{-ikx}]$					
i.e. $\psi_2 = 2A_2 \cos\{kx\}$ or $2iA_2 \sin\{kx\}$					
07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul	148				

Finite Well Energy Levels

	Zero Point Energy	
> If a partic -a/2≤<	the is confined to be roughly in the range $\langle \pm a/2 \rangle$	
then the u	ncertainty in its position is:	
∆x∼d ≻ From the U	Jncertainty Principle, its momentum cann	ot be
specified t Ap ~ ħ	to better than /a	
≻ Therefore	the momentum has to be at least this value $\sim \hbar/a$	lue:
> The corre	sponding energy is then:	
p²/2m	= E ≥ ħ²/2ma²	
Zero point	energy arises from <u>quantum</u> physics !	
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	166

Energy Degeneracy					
Energy {3h²/8ma²}	n _× 1	n _y 1	n _z 1		one state
{6h²/8ma²} {6h²/8ma²} {6h²/8ma²}	2 1 1	1 2 1	1 1 2	}	one energy, three states
{9h²/8ma²} {9h²/8ma²} {9h²/8ma²}	2 2 1	2 1 2	1 2 2	}	one energy, three states
Degeneracy arises since n _x n _y n _z can be combined in several ways to give same value of (n _x ² + n _y ² + n _z ²)					
07/09/2011	PHY 5255: Q	uantum &	Atomic	Physic	cs - E.S. Paul 173

3D Harmonic Oscillator			
 Potentia V(x, > Time de 	l energy: y,z) = ½Kx² + ½Ky² + ½Kz² pendent Schrödinger equation	same force constant K :	
-{ħ²/ -{	2m} {d²ψ/dx²} ħ²/2m} {d²ψ/dy²} -{ħ²/2m} {d²ψ/dz²}		
> Try solu	$+\frac{1}{2}K(x^{2} + y^{2} + z^{2})\psi = E\psi$ tion with independent x y z mo	otion:	
-{h²/ -{ħ²/ -{ħ	$ \{1/\psi_x\} \{d^2\psi_x/dx\} + \frac{1}{2}Kx^2 \\ 2m\} \{1/\psi_y\} \{d^2\psi_y/dy^2\} + \frac{1}{2}Ky^2 \\ \frac{1}{2}/2m\} \{1/\psi_z\} \{d^2\psi_z/dz^2\} + \frac{1}{2}Kz^2 \\ = E = constant $	function only of x function only of y function only of z	
07/09/2011	PHYS255: Quantum & Atomic Physics - E	.S. Paul 174	

3D Ha	rmonic	Osci	illator	Degeneracy
/ Energy 3/2	(ħ ω) n _× 0	n _y O	n _z 0	one state
5/2 5/2 5/2	1 0 0	0 1 0	$\left. \begin{smallmatrix} 0 \\ 0 \\ 1 \end{smallmatrix} \right\}$	one energy, three states
7/2 7/2 7/2 7/2 7/2 7/2	1 0 2 0	1 0 1 0 2 0	0 1 1 0 0 2	one energy, six states
07/09/2011	PHY5255: Q	luantum & A	Atomic Physics ·	- E.S. Paul 176

Spherical Polar Coordinates					
≻ It can be sho	wn that (but not easily !): don't rememb	er			
∇² = {1/r² + {1/	²} d/dr (r² d/dr) 'r²} {1/sin{0}} d/d0 (sin{0} d/d0) {1/r²} {1/sin²{0}} d²/dφ²				
\succ For most V(r, $\theta,\phi)$ the solution is complicated but					
For solutions of the form V(r) = V(r) (central potential: function of radial coordinate only), the solutions have generic features					
07/09/2011	PHY5255: Quantum & Atomic Physics - E.S. Paul	180			

Radial Solutions					
 This might look horrible ! Use intuition ! Substituting R(r) = {1/r} χ(r) in (8.5.1), the equation can be cast in the form: 					
$-\{\hbar^{2}/2m\} d^{2}\chi/dr^{2} + [V(r) - N/r^{2}]\chi = E\chi$					
which looks like a 1D Schrödinger equation for the "radial wave function" χ = rR in a modified (central) potential energy function					
 Similarly try to recast (8.5.2) into a form of Schrödinger's equation, namely a second order partial differential of Y(θ,φ) equal to a number with dimension of energy multiplying Y(θ,φ) 					
07/09/2011 PHYS255: Quantum & Atomic Physics - E.S. Paul 184					

	HO Degeneracy	
 An <u>identical</u> or radial solution as it must 	energy level structure emerges using the n as using the x y z approach !	
 States used of states in t the number 	in the x y z solution are linear combination the r $\theta \phi$ solution er of states is the same	IS
> Subshells (n; > accidental	१) within a shell n are degenerate degeneracy	
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	195

Harmonic Oscillator Degeneracy					
Energy / (ħw)) n	ł	m		
572	0	0	0		one state
5/2	1	1	-1	٦	
5/2	1	1	0	7	one energy, three states
5/2	1	1	+1	J	-
7/2	2	0	0	١	
7/2	2	2	-2		
7/2	2	2	-1		one energy,
7/2	2	2	0	ſ	six states
7/2	2	2	+1		
7/2	2	2	+2	J	
07/09/2011 F	°HY5255: (Quantum &	Atomic P	hysics	- E.S. Paul 194

Hydrogen Atom Degeneracies							
Energy / {me ⁴ / $32\pi^2\epsilon_0^2\hbar^2$ }	n	ł	m dea	generacy			
-1	1	0	0	one			
-1/4	2	0	0				
-1/4	2	1	±1,0	four			
-1/9	3	0	0				
-1/9	3	1	±1,0	nine			
-1/9	3	2	±2,±1,0				
> Sub-shells within an energy shell are <u>degenerate</u>							
07/09/2011 PHYS255: Quantum	n & Ato	mic Physics	- E.S. Paul	198			

	nł	Quantum Numbers	
> Principal qu	Jantu	m number n is written as a digit	
> Angular mo	oment	um quantum number 🕻 is written as:	
ℓ = 0	S	"sharp"	
ℓ = 1	р	"principal"	
ℓ = 2	d	"diffuse"	
f = 3	f	"fundamental"	
l = 4	9)	
l = 5	h	> now alphabetical	
f = 6	i	J	
07/09/2011	PH	/S255: Quantum & Atomic Physics - E.S. Paul	199

[
Where is the Electron ?					
➢ Electron ψ ² =	probability density: RY ²				
Probabilit atom volu	ty of finding the electron in a small region of Ime:	the			
r² dr	$d\Omega = r^2 dr d(\cos\theta) d\phi$ $\Omega = solid angle$				
is:					
R _{nl} (r	r) $Y_{\ell m}(\Theta, \varphi) ^2 r^2 dr d\Omega$				
=	$ R_{n\ell}(r) ^2 Y_{\ellm}(\Theta,\varphi) ^2 \mathrm{d}r \mathrm{d}\Omega$				
$= \chi_{n\ell}(\mathbf{r}) ^2 Y_{\ell m}(\Theta, \varphi) ^2 d\mathbf{r} d\Omega$					
> Ask a mathematician !					
07/09/2011	PHYS255: Quantum & Atomic Physics - E.S. Paul	204			

