PHYS255: Quantum \& Atomic Physics

Eddie Paul
Room 411 Oliver Lodge Laboratory esp@ns.ph.liv.ac.uk
E.S.Paul@liv.ac.uk

These slides available on VITAL

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Some Text Books

> A.C. Phillips
"Introduction to Quantum Mechanics"
$>$ R. Eisberg \& R. Resnick
"Quantum Mechanics of Atoms,
Molecules, Solids, Nuclei \& Particles"
$>$ E. Zaarur, Y. Peleg, R. Pnini
"Quantum Mechanics" Schaum's Easy Outlines
> D. McMahon
"Quantum Mechanics Demystified"
available at the Liverpool e-brary:
http://www.liv.ac.uk/library/electron/db/ebrary.html

07/09/2011 PHYS255: Quantum \& Atomic Physics - E.S. Paul

PHYS255 Timetable 2011

> Semester 1 Lectures (ORBIT!)
> Tuesday 09:00-11:00 Rotblat (207)
> Wednesday 09:00-10:00 Life Sciences LT3 (215)
> Tutorials
> Wednesday Weeks 2, 5, 8, 11 Oliver Lodge (208)
> Science Communication Project
> Deadline for written report: (10\%)
$>$ Monday November 14 ${ }^{\text {th }}$ at 16:30 (Week 8)
> Week 11:
>5 minute presentation using data projector (i.e. PowerPoint) (10\%)

Basic Ideas of Quantum Mechanics

- A general introduction to basic concepts of quantum physics is available on VITAL:
QMIntro.pdf
> The mathematical formalism is also introduced for the present course, based on Schrödinger's wave mechanics (PHYS255), while more general formalisms of quantum mechanics are also introduced, useful for next year's PHYS361 module.
\qquad

PHYS255: Topics

> 1. Introduction
> 2. Essential Mathematics
$>$ 3. Forces and Potential Energy
> 4. Quantisation
> 5. Wave Particle Duality
> 6. Particle Wave Function
> 7. Particle Wave Equation
> 8. Wave Dynamics of Particles: Bound States
> 9. Wave Dynamics of Particles: Scattering
$>$ 10. Atomic Structure

1. Introduction

General ideas

The Birth of Quantum Mechanics

\Rightarrow Quantum Mechanics is the theory of atomic and subatomic systems
$>$ At the end of the 19th century, classical physics had problems explaining the transfer of energy between radiation and matter (blackbody radiation)
> It was solved by Planck who introduced discrete quanta of energy - the energy exchange is not continuous
>Quantum means "how much" or "finite amount of some quantity"

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

The Death of Determinism

> The 1903 Nobel Prize was awarded for the discovery of nuclear radioactivity (Becquerel, Curie, Curie)
$>$ Previously, physical phenomena were thought to be deterministic (Newton) and it was assumed that the motion of an object could be predicted with unlimited accuracy, given the initial conditions
$>$ Radioactivity is different - the decay of each individual nucleus cannot be precisely predicted, but its probability of decay could be analysed on the statistical behaviour of many nuclei

The Rise of the Quantum

$>$ Einstein (1905) showed that light acted as if it were "grainy" and used the quantum approach to explain the photoelectric effect - energy is exchanged by discrete photons
$>$ Niels Bohr (1913) incorporated the quantum into his model of the atom and discrete electronic energy levels
$>$ The quantum began to appear in other areas of physics, then in chemistry and other sciences
> A full theory of Quantum Mechanics was developed in 1927

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

What is Quantum Mechanics?

>Quantum Mechanics is the name given to a system of equations which must be used instead of Newton's Laws of Motion in order to calculate the behaviour of atoms, electrons and other ultimate particles of matter
> Newton's laws work well for the motion of planets, but not electrons in an atom
> Quantum Mechanics gives very nearly the same answers as Newton's classical laws, except when applied to "small" systems

When is a System "Small" ?

$>$ How do we distinguish between a "small" (quantum) and a "large" (classical) system?
>Planck's constant $\hbar=h / 2 \pi$ has the units of "action", i.e.

$$
\text { length } X \text { momentum or time } X \text { energy }
$$

> The "size" of a system is judged by the typical action
> For an electron in an atom, the action $\approx \hbar$ ("small" or quantum), while in an electronic device, the action » \hbar ("large" or classical)

Measurement

> In classical physics, the act of measurement need not effect the object under observation and the properties of a classical object can be specified with precision
> This is not the case in quantum physics! Measurement plays an active and disturbing role - quantum particles are best described by the possible outcomes of measurement

Quantum Mechanics mathematically includes the effect of measurement on a system (Uncertainty Principle)
> Quantum Mechanics challenges intuitive notions about reality, such as whether the property of a particle exists before a measurement is made on it (Schrödinger's cat)
07/09/2011 PHYs255: Quantum \& Atomic Physics - E.S. Paul

Is Quantum Mechanics Correct?

> Albert Einstein never accepted the indeterministic nature of Quantum Mechanics: "God does not play dice"
> Niels Bohr stated: "Anyone who is not shocked by quantum theory has not understood it"
> Nevertheless, despite its philosophical difficulties, no prediction of quantum theory has ever been disproved!
$>$ Quantum Mechanics is the founding basis of all modern physics: solid state, molecular, atomic, nuclear and particle physics, optics, thermodynamics, statistical mechanics... ...chemistry, biology, astronomy, cosmology

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Mathematical Techniques

> This course is based on 'Wave Mechanics'
2.1 Algebra of Complex Numbers [$\mathrm{i}=\sqrt{ }(-1)$] > Representation of waveforms
> Combination of waveforms, magnitudes and phases
> Differentiation of waveforms
> 2.2 Operators and Observables
> Eigenvalue Equation
$>$ Basic ideas of wave mechanics
> Mutual disturbance
$>$ Tutorial Set 1 (for week 2)
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Complex plane
x-axis "real" $x=r \cos \theta$ y-axis "imaginary" $y=r \sin \theta$

$$
\exp \{i \theta\}=\cos \theta+i \sin \theta
$$

\rightarrow Represent vector \underline{r}

$$
(x+i y)
$$

$$
r e^{i \theta}=r \exp \{i \theta\}
$$

$>$ Magnitude (squared)

$$
r^{2}=x^{2}+y^{2}
$$

$$
=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)
$$

$$
\text { i.e. } \cos ^{2} \theta+\sin ^{2} \theta=1
$$

$>$ Phase angle

$$
\theta=\tan ^{-1}\{y / x\}
$$

$$
\tan \theta=\{y / x\}
$$

$$
=\{r \sin \theta / r \cos \theta\}
$$

$$
\text { i.e. } \tan \theta=\sin \theta / \cos \theta
$$

Waveforms

> Wave function

- Amplitude A

$$
\Psi(x, t)=A \sin \{k x-\omega t\}
$$

> Wave number $\mathrm{k}\left(\mathrm{m}^{-1}\right)=2 \pi / \lambda$, wavelength $\lambda(\mathrm{m})$
> Angular frequency $\omega\left(\right.$ rad $\left.s^{-1}\right)=2 \pi / T$, period $T(s)=v^{-1}$ frequency v (hertz)
\rightarrow Velocity $c=\omega / k \quad(=v \lambda)$
>Can also represent in terms of complex exponentials

$$
\Psi(x, t)=A \exp \{i(k x-\omega t)\}
$$

> Time independence

$$
\psi(x)=A \exp \{i k x\}
$$

07/09/2011
PHY 2555: Quantum \& Atomic Physics - E.S. Paul

Complex Exponentials

> Some useful relationships:

$$
\begin{array}{ll}
\exp \{0\}=1 & (x=1, y=0) \\
\exp \{i \pi / 2\}=i & (x=0, y=1) \\
\exp \{i \pi\}=-1 & (x=-1, y=0) \quad \text { Euler equation } \\
\exp \{i 3 \pi / 2\}=\exp \{-i \pi / 2\}=-i \quad(x=0, y=-1)
\end{array}
$$

> Draw the vectors!

Waveforms (de Broglie Wave)

\rightarrow Wave travelling in the positive x direction

$$
\psi(x)=A \exp \{i k x\}
$$

> Wave travelling in the negative x direction

$$
\Psi(x)=A \exp \{-i k x\}
$$

- Relation between sines, cosines and complex exponentials

$$
\begin{aligned}
& \exp \{i \theta\}=\cos \theta+i \sin \theta \\
& \cos \theta=[\exp \{i \theta\}+\exp \{-i \theta\}] / 2 \\
& \sin \theta=[\exp \{i \theta\}-\exp \{-i \theta\}] / 2 i
\end{aligned} \text { PHys255: Quantum \& Atomic Physics - E.S. Paul }
$$

07/09/2011

Combination of Waveforms

$>$ Waveform 1
"wavevector 1" $\Psi_{1}=A_{1} \exp \left\{\mathrm{ik}_{1} \times\right\}$
$>$ Waveform 2
"wavevector 2" $\Psi_{2}=A_{2} \exp \left\{i \mathrm{ik}_{2} x\right\}$
> When summing waveforms (vectors) we must take into account the relative phase $\delta=\theta_{2}-\theta_{1}$ of the waveforms $\psi=\psi_{1}+\psi_{2}=A_{1} \exp \left\{i \mathrm{k}_{1} \times\right\}+A_{2} \exp \left\{i \mathrm{k}_{2} \times\right\} \exp \{i \delta\}$
$>$ In terms of sines (cosines)
In phase: $\delta=0$

$$
\psi=A_{1} \sin \left\{k_{1} x\right\}+A_{2} \sin \left\{k_{2} x+\delta\right\}
$$

Antiphase: $\delta=\pi\left(180^{\circ}\right)$
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul
21

Differentials

\rightarrow Differential of waveform $\sin \theta$:

$$
>d / d \theta\{\sin \theta\}=\cos \theta=\sin \{\theta+\pi / 2\}
$$

phase $+90^{\circ}$
$>$ Differential of wavevector $\exp \{i \theta\}$:
$\Rightarrow d / d \theta\{\exp \{i \theta\}\}=i \exp \{i \theta\}=\exp \{i \pi / 2\} \exp \{i \theta\}$

$$
=\exp \{i(\theta+\pi / 2)\} \quad \text { phase }+90^{\circ}
$$

$>d^{2} / d \theta^{2}\{\exp \{i \theta\}\}=i^{2} \exp \{i \theta\}=-1 \exp \{i \theta\}$

$$
=\exp \{i \pi\} \exp \{i \theta\}
$$

$$
=\exp \{i(\theta+\pi)\}
$$

2.2 Operators

> An operator is a mathematical entity which 'operates' on any function, of x say, and turns it into another function
$>$ The simplest operator is a function of x

$$
\hat{A}=\hat{A}(x) \quad \text { e.g. } \quad \hat{A}(x)=x^{2}
$$

$>$ Given any function $\psi(x)$, this operator gives

$$
\hat{A}(x) \psi(x)=x^{2} \psi(x)
$$

> An operator may also differentiate, i.e. a function of $\partial / \partial x$

$$
\hat{A}(\partial / \partial x) \quad \text { e.g. } \quad \hat{A}(\partial / \partial x)=\partial^{2} / \partial x^{2}
$$

$>$ Given any function $\psi(x)$, this operator gives

$$
\hat{A}(\partial / \partial x) \psi(x)=\partial^{2} \psi(x) / \partial x^{2}
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Operator Equation

$>$ Take an operator $\hat{A}(x, \partial / \partial x)$

$$
\hat{A}=\frac{\partial}{\partial x} x
$$

$>$ Then for any function $\psi(x)$

$$
\hat{A} \psi(x)=\frac{\partial}{\partial x} x \psi(x)=\psi(x)+x \frac{\partial \psi(x)}{\partial x}=\left(1+x \frac{\partial}{\partial x}\right) \psi(x)
$$

\rightarrow Now remove $\psi(x)$ to give the operator equation

$$
\frac{\partial}{\partial x} x=\left(1+x \frac{\partial}{\partial x}\right)
$$

Observables and Operators

$>$ We can associate an operator with any observable, e.g. position or momentum
$>$ The eigenvalues of the operator represent the possible results of the observation
> However, for small systems the act of observation can disturb the (quantum) system
\rightarrow Hence for two successive measurements, the result depends on the order of observation

Eigenvalue Equation

$>$ To each operator $\hat{A}(x, \delta / \partial x)$ belong a set of numbers a_{n} and functions $u_{n}(x)$ defined by the equation

$$
\hat{A} u_{n}(x)=a_{n} u_{n}(x)
$$

$>$ Here a_{n} is an eigenvalue and $u_{n}(x)$ the corresponding eigenfunction
> The eigenfunctions of an operator are those special functions which remain unaltered under the operation of the operator, apart from multiplication by the eigenvalue

Commutation Relations

$>$ Now consider the successive operation of two operators. We define the 'commutator' of two operators \hat{A} and \hat{C} as

$$
[\hat{A}, \hat{C}]=\hat{A} \hat{C}-\hat{C} \hat{A}
$$

which is the difference between operating first with \hat{C} and then \hat{A}, and first with \hat{A} and then with \hat{C}
$>$ In general $[\hat{A}, \hat{C}] \neq 0$ but is some new operator
\rightarrow For example, if $\hat{A}=x$ and $\hat{C}=\partial / \partial x$, it can be shown that

$$
[x, \partial / \partial x]=-1
$$

Mutual Disturbance

$>$ The commutator of the corresponding operators, e.g. \hat{A} and \hat{C} is therefore, in general, non-zero, $[\hat{A}, \hat{C}] \neq 0$
> The commutator gives a measure of the mutual disturbance of the two measurements
$>$ The magnitude of the disturbance is related to \hbar
> Thus Planck's constant gives a fundamental limit of the accuracy to which we can measure two (non-commuting) properties of a system, e.g. position and momentum of a particle

The Uncertainty Principle

\rightarrow Consider the measurement of position \times and momentum p
\rightarrow Accurate p requires low momentum photons (long wavelength) - very inaccurate x (and vice versa)
> The position and momentum operators mutually disturb each other

$$
[\hat{x}, \hat{p}] \neq 0 \quad \text { assume: } \quad[\hat{x}, \hat{p}]=i \hbar
$$

$>$ If we represent the position operator by $\hat{x}=x$
> Then, since

$$
\left[x, \frac{\partial}{\partial x}\right]=-1
$$

the momentum operator is

$$
\hat{p}=-i \hbar \frac{\partial}{\partial x}
$$

Normalisation

$>$ The eigenvalue equation remains unchanged if the eigenfunctions are multiplied by a numerical factor, e.g.

$$
\hat{p} C u_{p}(x)=p C u_{p}(x)
$$

$>$ To fix the magnitude of the eigenfunctions, we impose the normalising condition

$$
\int_{-\infty}^{\infty} u_{p}^{*}(x) u_{p}(x) d x=1
$$

$>$ For the de Broglie wave this yields

$$
\int_{-\infty}^{\infty} C^{*} e^{-i p x / \hbar} C e^{i p x / \hbar} d x=|C|^{2} \int_{-\infty}^{\infty} d x=1
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Localised Particle

$>$ If the particle (de Broglie wave) is confined to the region $0 \leq x \leq L$, the normalisation condition becomes

$$
|C|^{2} \int_{0}^{L} d x=|C|^{2} L=1
$$

> Hence

$$
C=\frac{1}{\sqrt{L}}
$$

\rightarrow The normalised de Broglie wave is

$$
u_{p}(x)=\frac{1}{\sqrt{L}} e^{i p x / \hbar}
$$

07/09/2011

Total Energy of a Particle

> The energy of a free particle is classically just its kinetic energy

$$
\text { K.E. }=\frac{1}{2} m v^{2}=\frac{p^{2}}{2 m}
$$

$>$ The corresponding operator (Hamiltonian) is

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}
$$

$>$ In the presence of a potential $V(x)$ the Hamiltonian is

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

The Schrödinger Equation

> The possible energy levels of a system are the eigenvalues of the Hamiltonian operator

$$
\hat{H} u_{E}(x)=E_{n} u_{E}(x)
$$

> This equation is solved subject to boundary conditions and the fact that the eigenfunctions $u_{E}(x)$ must be finite everywhere
> The choice of the potential energy function $V(x)$ defines the system

Expectation Value of an Operator

$>$ The average value of repeated observations \hat{A} on systems in an arbitrary (normalised) state $\psi(x)$ is

$$
\bar{a}_{\psi}=\langle\hat{A}\rangle=\int \psi^{*}(x) \hat{A} \psi(x) d x
$$

> Applying this to the observation of position, implies that the probability of position x is

$$
P_{\psi}(x)=|\psi(x)|^{2} \quad \text { probability density }
$$

$>$ The normalisation condition ensures that the probability of finding the particle somewhere is unity

The Overlap Integral

\Rightarrow The probability of an observation A on a state $\psi(x)$ having a result a is related to the extent that the function $\psi(x)$ resembles the eigenfunction $u_{a}(x)$

$$
P_{\psi}(a)=\left|\int u_{a}^{*}(x) \psi(x) d x\right|^{2}
$$

$>$ In general, any physical state $\psi(x)$ can be expressed as a linear expansion of the eigenfunctions $u_{a}(x)$ of an operator A

$$
\psi(x)=\sum_{i} c_{i} u_{a i}(x)
$$

07/09/2011

[^0]
Summary: Operators

> A spatial operator 'extracts' the position co-ordinate from a wave-function, e.g.

$$
\hat{x} \Psi(x, y, z, t)=x \Psi(x, y, z, t)
$$

3. Forces and Potential Energy

> Similarly, the differential momentum operator 'extracts' the momentum from a wave-function, i.e.
$\hat{p} \Psi(x, y, z, t)=-i \hbar \frac{\partial}{\partial x} \Psi(x, y, z, t)=p \Psi(x, y, z, t)$
> Other types of operators may be used, e.g. matrix operators (Heisenberg).
07/09/2011 PHYS255: Quantum \& Atomic Physics - E.S. Paul

Introduction

$>$ Quantum Physics is the theory of atomic and subatomic matter
> It was developed from Classical Physics
> Matter (Newton)
> Radiation (Maxwell)
> Certain phenomena required energy quantisation
> Black body radiation, photoelectric effect
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Classical Matter

> Point particle, specified by

$$
\text { Mass } m \quad \text { Energy } E \quad \text { Momentum } p
$$

>Governed by Newtonian Mechanics (for constant mass)

$$
\mathbf{F}=\frac{d \mathbf{p}}{d t}=m \frac{d \mathbf{v}}{d t}=m a
$$

$>$ One dimension x, or radial force r
> Physical system specified by
$>$ force $F(x)$ at position x
$>$ force $F(r)$ at position r
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Force and Potential Energy

\rightarrow Potential energy is defined as

$$
V(x)=-\int_{x_{0}}^{x} \mathbf{F}(x) d x
$$

> The lower limit x_{0} (arbitrarily) defines when $V\left(x_{0}\right)=0$
> Hence force is given by

$$
F(x)=-\frac{\partial V}{\partial x}
$$

$>$ i.e. force $=-($ slope of V$)$
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Forces, examples

> Gravity: force downward, g acceleration due to gravity

$$
\mathbf{F}(x)=-m g
$$

> Harmonic Oscillator: restoring force

$$
\mathbf{F}(x)=-m \omega^{2} x
$$

\rightarrow Hydrogen atom: Coulomb attraction, spherical symmetry

$$
\mathbf{F}(\mathbf{r})=-\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{r^{2}}
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Potential Energy Functions, examples

> Gravity

$$
V(x)=\int_{0}^{x} m g d x=m g x
$$

>Harmonic Oscillator

$$
V(x)=\int_{0}^{x} m \omega^{2} x d x=\frac{1}{2} m \omega^{2} x^{2}
$$

> Hydrogen Atom

$$
V(\mathbf{r})=\int_{\infty}^{r} \frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{d r}{r^{2}}=-\frac{e^{2}}{4 \pi \varepsilon_{0} r}
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Conservation of Energy

- Force may expressed as

$$
F(x)=m \frac{d v(x)}{d t}=m \frac{d v(x)}{d x} \frac{d x}{d t}=m v \frac{d v}{d x}
$$

$>$ Integrating yields $\int F(x) d x=\int m v \frac{d v}{d x} d x=m \int v d v$
> Hence

$$
-V(x)=\frac{1}{2} m v^{2}+\text { const }
$$

$>$ Rewrite as

$$
V(x)+T(x)=E
$$

> Potential Energy + Kinetic Energy $=$ Total Energy (const)
07/09/2011 PHYS255: Quantum \& Atomic Physics - E.S. Paul

Quantum Mechanics is Weird!

- What happens when a quantum particle comes to the edge of a potential (cliff)?
> There is a chance of it being reflected (R) rather than transmitted (T)!

See VITAL for links to movies of wave packet motion

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

The Potential Well

$>$ Given $V(x)$, a particular value of x is only possible for positive kinetic energy $T(x)>0$, i.e. $E>V(x)$
$>$ Classically the particle will oscillate between positions x_{1} and x_{2} in the above potential

4.1 Black Body Radiation

\rightarrow Radiation from a heated source with no specific structure
>Frequency distribution determined only by temperature T
$>$ light bulb
$>$ the Sun
>but not a sodium lamp

> Heat is radiation from random motion of electrons in the source (Maxwell)
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Introduction

- Energy quantisation is required to describe the following phenomena:
>4.1 Black Body Radiation, Ultraviolet Catastrophe
> 4.2 Photoelectric Effect PHYs259
> 4.3 Atomic Spectra PHYS259
> Classical physics with no requirement of energy quantisation fails to describe the above

Black Body Radiation Distribution

Classical Energy Density

\rightarrow Assume that the energy of radiation in the frequency interval $\omega \rightarrow \omega+\delta \omega$ can be arbitrarily small, depending only on the intensity
$>$ Energy density $=$ energy/volume
Rayleigh-Jeans formula

$$
\rho(\omega) d \omega \sim(k T) \frac{\omega^{2} d \omega}{c^{3}}
$$

Boltzmann's constant k, speed of light c

- From Statistical Mechanics

$$
\rho(\omega) d \omega=\frac{2}{\pi}(k T) \frac{\omega^{2} d \omega}{c^{3}}
$$

i.e. ω^{2} dependence
> Completely wrong! "Ultraviolet Catastrophe"

Ultraviolet Catastrophe

> A disaster for Classical Physics!

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Planck's Solution

> Planck assumed that the energy of radiation, of frequency ω, can only occur in quanta (photons) of magnitude

$$
E=\hbar \omega=h v
$$

>Planck's constant has dimensions of angular momentum, or momentum x length, or energy x time

$$
\hbar=h / 2 \pi=1.05 \times 10^{-34} J S
$$

- A continuous variable (integrate) is now replaced by a discrete variable (sum of series)

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

The Quantum

> The word quantum is Latin for
"how much"
or
"finite amount of some quantity"
> Planck:
energy exchange between radiation and matter is not continuous...
radiation and matter exchange energy in discrete lumps or multiples of the basic quantum

Planck's Radiation Formula

> The energy density is given by

$$
\rho(\omega) d \omega=\frac{2}{\pi} \frac{\hbar \omega}{\left[e^{\hbar \omega / k T}-1\right]} \frac{\omega^{2} d \omega}{c^{3}}
$$

> Low frequency (kT »ћ ω)

$$
\rho(\omega) d \omega=\frac{2}{\pi}(k T) \frac{\omega^{2} d \omega}{c^{3}}
$$

Tutorial 1
$>$ High frequency ($k T<\hbar \omega$)

$$
\rho(\omega) d \omega=\frac{2}{\pi} \hbar \omega\left[e^{-\hbar \omega / k T}\right] \frac{\omega^{2} d \omega}{c^{3}}
$$

Exponential damping

4.2 Photoelectric Effect

nonochromatic light of frequency v is incident on a cathode
> Above a certain threshold v, electrons are emitted from the cathode causing current flow to the anode
$>$ If V is increased (to V_{0}) then eventually the electrons will fail to have enough energy to reach the cathode and the current stops
$>\mathrm{V}_{0}$ is the "stopping potential"
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Photoelectric Effect: Work Function

4.3 Atomic Spectra (Line Spectra)

Hydrogen emission spectrum

Hydrogen absorption spectrum

07/09/2011 PHYS255: Quantum \& Atomic Physics - E.S. Paul
63

Energy from Matter to Radiation

Discharge Spectrum of Atomic Sodium
\rightarrow The generation of X rays - by firing electrons at a metal target - is the inverse of the photoelectric effect.
$>$ Energy is transferred from matter to radiation
\rightarrow The X ray spectrum has a maximum frequency, or minimum wavelength, that can be related to the kinetic energy of the electrons, and the accelerating voltage V

$$
e V=K . E .=\frac{p_{\max }^{2}}{2 m}=\hbar \omega=h v_{\max }=\frac{h c}{\lambda_{\max }}
$$

07/09/2011

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul
64

Discrete Atomic Energy Levels

> Excitation of atoms or molecules in the gaseous phase (heating) leads to radiation emitted with a discrete spectrum of wavelengths λ (or frequency v)
> Atoms or molecules emit photons of energy $E=h v$ as they de-excite from one discrete energy state to another. Atomic, molecular energy is quantised

$$
h v=E_{i}-E_{f} \quad \text { (Bohr) }
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Hydrogen Balmer Series

\Rightarrow The Balmer series in hydrogen is a set of dicrete-line transitions given by:

$$
1 / \lambda=R_{H}\left\{1 / n^{2}-1 / m^{2}\right\} \quad n=2, m=3,4,5 \ldots
$$

$>$ The Rydberg constant is:

The Bohr Atom

> Bohr postulated that the angular momentum of an allowed electron orbit is quantised and given by

$$
L=l \hbar \quad l=1,2,3 \ldots
$$

> This implied discrete allowed energy level:

$$
E_{n} \quad n=1,2,3 \ldots
$$

$>A$ single photon of frequency w is emitted when an electron 'jumps' from one orbit to another

$$
E_{m}-E_{n}=\hbar \omega \quad m>n
$$

- Bohr calculated

$$
\begin{aligned}
& \hbar \omega_{m n}=\left\{Z^{2} e^{2} / 8 \pi \varepsilon_{0}\right\} \\
&\text { constants } \left.- \text { Bohr radius }-a_{0}\right\}\left\{1 / n^{2}-1 / m^{2}\right\} \\
&
\end{aligned}
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Quantisation: Summary

> Ultraviolet Catastrophe
Energy cannot be subdivided into ever smaller "pieces" - quanta

Energy is quantised: $E=n h v$ (n integer)
> Photoelectric Effect
Electromagnetic radiation (light) of frequency v consists of a "stream" of photons each of energy hv

- Atomic Spectra

Consist of discrete frequencies v_{i} equal to the energy released in one photon as the atom de-excites from higher to lower quantised energy states
>Classical physics, with no requirement of energy quantisation, fails to describe these phenomena

What Is A Wave?

\rightarrow A disturbance within a medium
> Transmits energy without net movement of matter
$>$ Not confined to boundaries

What Is A Particle?	
> Finite volume	
> Energy contained within mass	
> Described by classical physics	
> Must obey laws of energy, charge and momentum conservation	
07/09/20011 PHYS255: Quantum \& Atomic Physics E.E.S. Paul	70

Light: Waves Or Particles?

Double Slit Experiment

Thomas Young's Double Slit Experiment

Double Slit Experiment

07/09/2011 PHYS255: Quantum \& Atomic Physics - E.S. Paul

Double Slit Experiment With Particles

> Sending electrons, one at a time, through a double slit (!) produces an interference pattern (over time)!

Electromagnetic Radiation

\rightarrow Wave phenomenon in $\underline{E} \underline{B}$, interference, diffraction (Maxwell)

\rightarrow Particle phenomenon in energy transmission
> Photons (Planck, Einstein)
> Newton's corpuscles
> Waves or particles?
$>$ Both! Wave-particle duality
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

How Big Can Quantum Particles Be?

\Rightarrow The double split experiment has been performed for fullerene molecules, C_{60} and C_{70}, with dimensions of the order of 1 nm (!)

> Fluorinated fullerine molecules, $\mathrm{C}_{60} \mathrm{~F}_{48}$, with a mass of 1632 amu, also show quantum interference effects
$>$ What next?
> Viruses, Nanobacteria

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Matter

$>$ Wave phenomenon in interference, diffraction

- Electron, neutron microscopy (Davisson \& Germer)
> Particle phenomenon in kinematics
$>$ Energy, momentum
> Mass spectrometry
> Waves or particles?
> Both! Wave-particle duality
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Electromagnetic Radiation: Photons

$>$ Energy density Π (Poynting vector) $\} \quad$ classical
$>$ Momentum density Π / c in free space $\}$
> Energy density $\Pi \propto h \nu$ (monochromatic frequency)
$>$ Momentum density $\Pi / c \propto h \nu / c=h / \lambda$ (quantum)
> Kinematic properties of photon:
> Energy $\mathrm{E}=\mathrm{h} \mathrm{\nu}$ (photoelectric effect)

- Momentum $\mathrm{p}=\mathrm{h} / \lambda$
- Also: $\mathrm{E}=\mathrm{cp}$ (massless particle $v=c / \lambda$)

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul
\Rightarrow A photon of energy E_{i} scatters inelastically from an electron of mass m_{e}

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Electrons as Waves

> The photoelectric and Compton effects suggest a particle nature for light
>However electrons can show wave-like properties!

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Particles/Waves of Matter

> Particle energy (classical)

$E=m c^{2}+p^{2} / 2 m+\ldots$ (non-relativistic)
$>$ Wavelength (quantum) $p=h / \lambda$ (De Broglie, electron/neutron scattering)
> Frequency (quantum)
$E=h \nu \quad$ (energy quantisation, massive particle $v \neq c / \lambda$)
\rightarrow The physics of matter at the dimension of atoms can be understood in terms of waves or of particles

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Equivalence

> Simple equivalence, particle-wave duality

	1
Energy	$\int\left\{c^{2} p^{2}+m^{2} c^{4}\right\} \Rightarrow h v$
Momentum	$p \Rightarrow h / \lambda$
Frequency	$E / h \leftarrow v$
Wavelength	$h / p \leftarrow \lambda$

Theory photon \curvearrowleft quantised electromagnetism electron \Rightarrow ?

$$
\text { neutron } \Rightarrow \text { ? }
$$

> Perceptions in terms of human experience/observation

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Wave Particle Duality: Summary

$>$ Certain phenomena, e.g. reflection, refraction can be understood in term of light consisting of waves or particles
> Certain phenomena, e.g. interference, diffraction, polarisation can only be understood in term of light consisting of waves and not particles

6. Particle Wave Function

> However the photoelectric effect can only be understood in term of light consisting of discrete particles (photons, Newton's corpuscles) and not waves
$>$ We need to consider both aspects, depending on what we "are looking at"

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Waves

$>$ Wave motion in physics is a general phenomenon in which, at any point in space (x, y, z) and time t, an observable (e.g. E) has a well specified value $E(x, y, z, t)$

- This observable varies in such a manner that one observes periodic dependence in space and time

> Water waves $\mathrm{E}=$ displacement
- Sound waves E = pressure
> Earthquake $E=$ stress
> Light E = Electromagnetic field

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

General Wave Equation

> Wave motion is predicted from the dynamics of the physics in the form of a wave equation

- E.g. transverse waves on a string: $E=y \quad$ Mechanics $\partial^{2} y / \partial x^{2}=\left\{1 / c^{2}\right\} \partial^{2} y / \partial t^{2} \quad c^{2}=$ tension $/\{$ mass/length $\}$
\Rightarrow E.g. sound waves: $E=P$ (pressure) Fluid Dynamics $\partial^{2} P / \partial x^{2}=\left\{1 / c^{2}\right\} \partial^{2} P / \partial \dagger^{2} \quad c^{2}=$ pressure / density or $\nabla^{2} P=\left\{1 / c^{2}\right\} \partial^{2} P / \partial t^{2}$ in $3 D$
\rightarrow E.g. electromagnetic waves: $\mathrm{E}=$ field Electromagnetism $\nabla^{2} \underline{E}=\left\{1 / c^{2}\right\} \partial^{2} \underline{E} / \partial t^{2}$

Electromagnetic Waves in Free Space

>Photons in free space

$$
\partial^{2} \underline{E} / \partial x^{2}=\left\{1 / c^{2}\right\} \partial^{2} \underline{E} / \partial \dagger^{2}
$$

$>$ Look for a solution $\underline{E}=\underline{E}_{0} \cos (k x-\omega t)$ Harmonic: $\omega=c k, v=c / \lambda$
> Differentiate twice:

$$
\partial^{2} \underline{E} / \partial x^{2}=-k^{2} \underline{E}_{0} \cos (k x-\omega t)
$$

$$
\partial^{2} \underline{E} / \partial t^{2}=-\omega^{2} E_{0} \cos (k x-\omega t)
$$

> A solution is:

$$
\underline{E}=\underline{E}_{0} \cos (k x-\omega t) \text { if } k^{2}=\omega^{2} / c^{2}
$$

$>$ This represents a harmonic (sinusoidal) plane wave in \underline{E} with wavelength $\lambda=2 \pi / \mathrm{k}$, and frequency $v=\omega / 2 \pi$
\rightarrow Also $v \lambda=c$
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Electromagnetic Wave

\rightarrow A plane harmonic $E M$ wave $\underline{E}=\underline{E}_{0} \cos (k x-\omega t)$ is no \dagger equal to one photon!
> Wave-particle duality is so far a qualitative concept
> It allows us to understand
> It does not (yet) allow us to calculate or predict
$>$ We need a theory in which the representation of a particle as a wave yields predictions for the behaviour of particles

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Wave Function

\rightarrow Postulate 1 (a true revolution in physics)

$>$ To describe the dynamics of any particle it is necessary to assign it a wave-function: $\Psi(x, t)$
$>$ The wave-function $\Psi(x, t)$ may be complex (real \& imaginary)
> At a time t, the probability of finding the particle in a small region of x is:

$$
|\Psi(x, t)|^{2}
$$

What is Ψ ?

> So far, all wave motion has been recognised as a periodic variation of a (real) physical observable
$>$ What is the physical observable corresponding to Ψ ?
> There isn't one!
$>$ One cannot say that a particle is a wave phenomenon of any particular physical observable
$>$ A particle wave-function is a construct in a theory with which we are able to calculate and predict in new ways
$>$ The real physical quantity is the "probability density" $|\Psi|^{2}$

Probability Density (1D)

> At a time t, the probability of finding a particle in a small region of x is:

$$
|\Psi(x, t)|^{2}=\Psi \Psi^{\star}
$$

$>$ If we know that the particle is confined to a region $x_{1} \leq x \leq x_{2}$ then the probability of finding the particle in this region is 1 , i.e. the wave function is normalised:

$$
\int|\Psi(x, t)|^{2} d x=1 \quad \text { (integrate between } x_{1} \text { and } x_{2} \text {) }
$$

> A stationary state occurs if $|\Psi(x, t)|^{2}=\Psi \Psi^{*}$ has no time dependence

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Indeterminism in the Real World

$>$ Born (1927) introduced the probabilistic interpretation of Quantum Mechanics
>Quantum Mechanics only allows us to calculate the probability of a particle being found at a specific position in space
> We can never specify exactly where the particle is
> This can be generalised to other properties, such as momentum
7. Particle Wave Equation

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Introduction

$>$ Why do we use the concept of a particle?
> In many cases the dynamics can be calculated assuming a mass m
>Free electron theory of metals/conductors
$>$ Particle accelerators and storage rings
> In many cases detection is random "hits" as "localised" energy is deposited
> Geiger counters
> Photomultipliers
> Localisation is in space and time

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Wave Equation

> In many cases the dynamics can be calculated assuming interference, diffraction like phenomena
\rightarrow X ray diffraction
> Neutron/electron diffraction
> In many cases detection of particle diffraction, interference follows collection of many detected hits spread over a distribution suggesting individual particles do not have completely predictable behaviour
> Probability theory
> Wave function postulate
$>$ No localisation is in space and time

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Simplest Wave Function

> Consider the simplest possible choice of a complex form for $\Psi(x, t)$ to which we can assign a unique harmonic wave number $k=2 \pi / \lambda$ and angular frequency $\omega=2 \pi v$

$$
\begin{equation*}
\Psi=A \exp \{i(k x-\omega t)\} \tag{7.1}
\end{equation*}
$$

where A is a constant ($s 1$) independent of x and \dagger
\rightarrow Can we assign this to the wave function of a free particle?
> Yes - the de Broglie wave (see QMIntro.pdf)

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

De Broglie Wavelength

> The energy and momentum of a "wave" corresponding to a particle are:

Energy:

$$
\begin{aligned}
& E=h v=\hbar \omega \\
& p=h / \lambda=\hbar k
\end{aligned} \quad(\hbar=h / 2 \pi)
$$

Momentum:
> Assuming the particle is non-relativistic, the total energy E of the free particle is equal to its kinetic energy T :

$$
E=T=p^{2} / 2 m
$$

> So for a free particle ("dispersion relation"):

$$
\begin{equation*}
\hbar \omega=(\hbar k)^{2} / 2 \mathrm{~m} \tag{7.2}
\end{equation*}
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Particle in a Potential

\rightarrow Consider a particle moving in the presence of a constant potential energy $V(x)=V_{0}$
$>$ Total energy is a sum of kinetic and potential energies

$$
E=T+V_{0}=p^{2} / 2 m+V_{0}
$$

> From De Broglie:

$$
\begin{equation*}
\hbar \omega=(\hbar k)^{2} / 2 m+V_{0} \tag{7.4}
\end{equation*}
$$

> Again look for the simplest possible solution

$$
\Psi=A \exp \{i(k x-\omega t)\}
$$

> Differentiate:

$$
\partial^{2} \Psi / \partial x^{2}=-k^{2} A \exp \{i(k x-\omega \dagger)\}=-k^{2} \Psi
$$

> And

$$
\partial \Psi / \partial t=-i \omega A \exp \{i(k x-\omega t)\}=-i \omega \Psi
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Particle in a Potential

> Combine:
$>$ Look for the simplest linear differential equation which has solution Ψ and satisfies $\omega=\hbar k^{2} / 2 m$

$$
\Psi=A \exp \{i(k x-\omega t)\}
$$

$$
\partial \Psi / \partial x=i k A \exp \{i(k x-\omega t)\}
$$

$$
\partial^{2} \Psi / \partial x^{2}=-k^{2} A \exp \{i(k x-\omega \dagger)\} \quad \text { (quadratic in } k \text {) }
$$

\rightarrow And

$$
\partial \Psi / \partial t=-i \omega A \exp \{i(k x-\omega \dagger)\} \quad \text { (linear in } \omega \text {) }
$$

> Combine:

$$
\begin{equation*}
i \partial \Psi / \partial t=\left\{-\omega / k^{2}\right\} \partial^{2} \Psi / \partial x^{2} \tag{7.5}
\end{equation*}
$$

$>$ Or using Eq. 7.2 (i.e. $\hbar \omega=(\hbar k)^{2} / 2 m$):

$$
\begin{equation*}
i \hbar \partial \Psi / \partial t=\left\{-\hbar^{2} / 2 m\right\} \partial^{2} \Psi / \partial x^{2} \tag{7.3}
\end{equation*}
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul
$i \hbar \partial \Psi / \partial t=\hbar \omega \Psi=\left\{-\hbar \omega / k^{2}\right\} \partial^{2} \Psi / \partial x^{2}$
$>$ Or using Eq. 7.4 (i.e. $\hbar \omega=(\hbar k)^{2} / 2 m+V_{0}$):
$i \hbar \partial \Psi / \partial t=-\left\{\hbar^{2} / 2 m+V_{0} / k^{2}\right\} \partial^{2} \Psi / \partial x^{2}$
\rightarrow And remembering that:

$$
\partial^{2} \Psi / \partial x^{2}=-k^{2} \Psi
$$

we obtain:
$i \hbar \partial \Psi / \partial t=-\left\{\hbar^{2} / 2 m\right\} \partial^{2} \Psi / \partial x^{2}+V_{0} \Psi$
\Rightarrow This is the free particle solution
$>$ Note that V_{0} does not localise the particle
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Physical Properties of Free Particle

> $\quad \Psi=A \exp \{i(k x-\omega t)\}$
with $\omega=\hbar k^{2} / 2 m$
$>$ The probability density:

$$
|\Psi|^{2}=|A|^{2}
$$

$$
\text { note }|\Psi|^{2}=\Psi \Psi \star
$$

is constant for all x and \dagger
> There is no preferred (more likely, more probable) value of x where we are more likely to find the particle
> The particle (momentum $p=\hbar k$) is completely nonlocalised in space (x)
\Rightarrow There is no preferred value of t at which we are more likely to find the particle
$>$ The particle (energy $E=\hbar \omega$) is non-localised in time (\dagger)

Localised Particle

$>$ Localise a particle: restrict it to a range Δx in x
> For all t, spatial localisation
> The particle may be constrained by an external force > Or potential energy $V(x)$

> No longer a "free" particle
> Wave Eq. 7.3
$i \hbar \partial \Psi / \partial t=\left\{-\hbar^{2} / 2 m\right\} \partial^{2} \Psi / \partial x^{2}$
no longer valid
> Wave function

$$
\Psi=A \exp \{i(k x-\omega t)\}
$$

no longer valid

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

A Revolutionary Prediction!

- A free particle has a specified momentum and energy but cannot be localised in space or time
> The particle is "everywhere all the time"
> This is a revolutionary prediction from a revolutionary theory
- Wave function:

Wave Function of Localised Particle
> Intuition from many wave phenomena

> Addition of two different harmonic waves

$$
\begin{aligned}
\Psi= & A_{1} \sin \left\{k_{1} x\right\}+A_{2} \sin \left\{k_{2} x\right\} \\
\sim & \sin \left\{\left(k_{2}-k_{1}\right) \times / 2\right\} \\
& x \cos \left\{\left(k_{2}+k_{1}\right) x / 2\right\}
\end{aligned}
$$

> Beat pattern when k's slightly different
Regions of high probability and low probability

Wave Packet

\rightarrow Now add many different harmonic waves

$$
\Psi=\sum A\left(k_{i}\right) \sin \left\{k_{i} x\right\} \text {, or } \Psi=\int A(k) \sin \{k x\} d k
$$

WMCMMMM

 muwn muw
most probable, particle "localised"
$>$ Quantum wave packet: $\Psi(x, t)=\int A(k) \exp \{i(k x-\omega t)\} d k$
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Quantum Wave Packet

$$
\begin{equation*}
\Psi(x, t)=\int A(k) \exp \{i(k x-\omega t)\} d k \tag{7.6}
\end{equation*}
$$

> This has no unique wave-number k, no unique frequency ω
$>$ The wave function is (infinite) sum of harmonic (free particle) wave functions

Each contribution has its own k and ω

Wave Equation for Localised Particle

> Total energy: $E=T+V(x)$

\rightarrow Classical physics says that if the total energy is fixed (constant E), then the kinetic energy T varies with x
\Rightarrow Momentum p varies with x
\rightarrow Equation like (7.4) $\left(\hbar \omega=(\hbar k)^{2} / 2 m+V_{0}\right)$ is not possible

\rightarrow Postulate 2

$>$ The wave equation, a solution of which is the wavefunction Ψ of a particle in a region with the potential energy function $V(x)$, is

$$
i \hbar \partial \Psi / \partial t=-\left\{\hbar^{2} / 2 m\right\} \partial^{2} \Psi / \partial x^{2}+V(x) \Psi
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Schrödinger's Equation

\rightarrow Equation (7.7) is known as Schrödinger's equation
$>$ It is not proven, only postulated!
> When the potential is constant

$$
V(x)=V_{0}
$$

we know it works
> Solutions of Schrödinger's equation are usually mathematically tricky!
> Now for some examples
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Particle Localised In A Box

For all energies, the particle is constrained to lie in the region

$$
\begin{array}{ll}
\quad 0 \leq x \leq a \\
x<0 & V(x) \Rightarrow \infty \\
0 \leq x \leq a & V(x)=0 \\
a<x & V(x) \Rightarrow \infty
\end{array}
$$

Classically, the particle may have any energy and may be found anywhere in region 2
$>$ The "box" does not change with time \dagger
$>\mathrm{V}$ is not a function of t

Infinite Square Well Potential

\rightarrow Apply the Schrödinger equation in regions 1 and 3

$$
i \hbar \partial \Psi / \partial t=-\left\{\hbar^{2} / 2 m\right\} \partial^{2} \Psi / \partial x^{2}+V(x) \Psi
$$

$>$ Or, dividing by $\mathrm{V}(\mathrm{x})$:

$$
\{i \hbar / V(x)\} \partial \Psi / \partial t=-\left\{\hbar^{2} / 2 m V(x)\right\} \partial^{2} \Psi / \partial x^{2}+\Psi
$$

\rightarrow But $1 / V(x)=0$, hence

$$
\begin{equation*}
\Psi=0 \tag{7.8}
\end{equation*}
$$

> Apply the Schrödinger equation in region 2 with $V(x)=0$ $i \hbar \partial \Psi / \partial t=-\left\{\hbar^{2} / 2 m\right\} \partial^{2} \Psi / \partial x^{2}$
$>$ Confining box does not change with time, hence we expect x dependence of Ψ to be independent of \dagger

$$
\Psi(x, t)=\Psi(x) \theta(t)
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Infinite Square Well Potential

> Differentiate:
$\partial \Psi / \partial t=\psi d \theta / d t \quad$ and $\quad \partial^{2} \Psi / \partial x^{2}=\theta d^{2} \Psi / d x^{2}$
$>$ Substitute in Schrödinger equation:
$i \hbar \psi d \theta / d t=-\left\{\hbar^{2} / 2 m\right\} \theta d^{2} \psi / d x^{2}$
> Rewrite:
iћ $\{1 / \theta\} d \theta / d t=-\left\{\hbar^{2} / 2 m\right\}\{1 / \psi\} d^{2} \psi / d x^{2}$
function only of $\dagger \quad$ function only of $x \quad \therefore$ both constant
$>$ Cancel \hbar and equate to "constant" ω :
$d \theta / d t=-\{i \omega\} \theta$ and $d^{2} \psi / d x^{2}=-\{2 m \omega / \hbar\} \Psi$
$>$ Solution for θ :
$\theta=\{$ constant $\} \exp \{-i \omega \dagger\}$

Time Independent Wave Function

> Time dependence θ of Ψ is such that the probability density $|\Psi|^{2}$ has no time dependence i.e. $\theta \theta^{\star}=1$
> "Time independent" or "stationary" wave function:

$$
\Psi=\psi \exp \{-i \omega \dagger\}
$$

$>$ Solution for $\Psi:$

$$
d^{2} \Psi / d x^{2}=-k^{2} \Psi \quad \text { where } k^{2}=\{2 m \omega / \hbar\}
$$

$$
\psi=A \sin \{k x\}+B \cos \{k x\}
$$

$$
\text { with } A, B \text { constants of integration }
$$

\rightarrow Hence in region 2:
$\Psi=\psi \theta=[A \sin \{k x\}+B \cos \{k x\}] \exp \{-i \omega t\}$

Stationary Wave Function

Infinite Well Wave-Functions

> Stationary wave function:
$>$ Complex pieces of Ψ only in time dependence
$>$ Compare solutions in regions 1, 2, 3 i.e. eqs 7.8 and 7.9
$>$ In 7.9 for $x=0$

$$
\Psi(x=0)=0 \quad \therefore A \sin \{0\}+B \cos \{0\}=0
$$

$>$ Since $\sin \{0\}=0$ and $\cos \{0\}=1$, then

$$
B=0 \text { and } A \neq 0
$$

\rightarrow Now at $x=a$

$$
\psi(x=a)=0 \quad \therefore A \sin \{k a\}+B \cos \{k a\}=0
$$

\rightarrow Since $B=0$ and $A \neq 0$, then
$\sin \{k a\}=0$ and hence $k a=n \pi, n=0,1,2 \ldots$
pointless solution

> There are n - 1 "nodes" (minimum probability density) away from $x=0, x=a$
> There are n "antinodes" (maximum probability density)

Discrete Solutions

> Allowed values of k :

$$
k=n \pi / a \quad n=1,2,3, \ldots
$$

$>$ Hence allowed values of ω :

$$
\omega=\{\hbar / 2 m\}\left\{\pi^{2} / a^{2}\right\} n^{2}
$$

$>$ The solutions for the wave function are:

$$
\Psi=A \sin \{n \pi x / a\} \exp \{-i \omega t\} \quad(0 \leq x \leq a)
$$

\square $(x<0, a<x)$
> The probability density is:

$$
|\Psi|^{2}=\Psi \star \Psi=A^{2} \sin ^{2}\{n \pi x / a\}
$$

Physics of the Solutions

> Particle probability density $|\Psi|^{2}$ is confined (non-zero) only inside the box $(0 \leq x \leq a) \quad$ classical physics
>Particle more likely to be found at some values of x (between 0 and a) than at others

$$
|\Psi|^{2} \propto \sin ^{2}\{n \pi x / a\} \quad \text { probability density }
$$

$>$ The wave function $\Psi(x, t)=\psi(x) \exp \{-i \omega \dagger\}$ has a time dependence $\exp \{-i \omega \dagger\}$
> time dependence of a "stationary state"
$>$ same as that of a free particle wave function

Quantised Energies

$>$ Using De Broglie $E=h \nu=\hbar \omega$ we find that the allowed energies of the particle in a box are:

$E=\left\{\hbar^{2} \pi^{2} / 2 m a^{2}\right\} n^{2}=\left\{h^{2} / 8 m a^{2}\right\} n^{2}$

- Energies of a particle in a confined region (bound state) are quantised $\left(E \propto n^{2}\right)$

$$
\begin{array}{ll}
n=1 & E=h^{2} / 8 m a^{2} \\
n=2 & E=4 h^{2} / 8 m a^{2} \\
n=3 & E=9 h^{2} / 8 m a^{2} \\
n=4 & E=16 h^{2} / 8 m a^{2}
\end{array}
$$

Time Independence

$>$ Schrödinger's equation with $V(x)$ time independent (7.7)

$$
i \hbar \partial \Psi / \partial t=-\left\{\hbar^{2} / 2 m\right\} \partial^{2} \Psi / \partial x^{2}+V(x) \Psi
$$

> Guided by the "particle in a box" solution, look for a solution:

$$
\Psi(x, t)=\psi(x) \exp \{-i \omega t\}
$$

> Now:

$$
i \hbar \partial \Psi / \partial t=\hbar \omega \exp \{-i \omega t\} \Psi(x)
$$

> And:

$$
-\left\{\hbar^{2} / 2 m\right\} \partial^{2} \Psi / \partial x^{2}=-\left\{\hbar^{2} / 2 m\right\} \exp \{-i \omega \dagger\} \partial^{2} \Psi / \partial x^{2}
$$

> And:

$$
V(x) \Psi=\exp \{-i \omega \dagger\} \Psi(x) V(x)
$$

\rightarrow Substitute in Schrödinger equation (7.7)

Time Independent Schrödinger Equation

$>$ We find that:

$$
\begin{aligned}
\hbar \omega \exp \{-i \omega \dagger\} \Psi(x)= & -\left\{\hbar^{2} / 2 m\right\} \exp \{-i \omega \dagger\} \partial^{2} \psi / \partial x^{2} \\
& +\exp \{-i \omega \dagger\} V(x) \psi(x)
\end{aligned}
$$

\rightarrow Cancelling $\exp \{-i \omega \dagger\}$ this can be rewritten as:

$$
\begin{array}{ll}
>\text { Or: } & \\
\quad E \psi(x)=-\left\{\hbar^{2} / 2 m\right\} \partial^{2} \psi / \partial x^{2}+V(x) \psi(x) \tag{7.10}
\end{array}
$$

$>$ This is the time-independent Schrödinger equation

$V(x)$ is not constant

>See Tutorial 2, Question 2
$>$ If $\mathrm{V}(x)$ is non-uniform and non-zero, the "stationary" (time independent) wave-function may assume a Gaussian form

$$
\Psi(x, t)=A \exp \left\{-x^{2} /\left(2 \sigma^{2}\right)\right\} \exp \{-i \omega t\}
$$

i.e. it has spatial extent related to σ - it is therefore localised in space
> The particle is not free and a unique value of momentum cannot be assigned to it
example: Harmonic Oscillator
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

The Uncertainty Principle

> Free particle

> Momentum certain $\Delta p=0$, but location unknown $\Delta x \Rightarrow \infty$
$>$ Localised particle, e.g. particle in a box $(n=1)$

$$
\psi \propto \sin \{k x\} \propto \exp \{i k x\}-\exp \{-i k x\}
$$

\rightarrow Now: $k=\pi / a$
\rightarrow And: $p=\hbar k=\hbar \pi / a=h / 2 a$
$>$ Uncertainty in $\mathrm{p}: \quad \Delta \mathrm{p} \sim h / 2 a$
$>$ Uncertainty in $x: \quad \Delta x \sim a$
\rightarrow Hence: $\quad \Delta p \Delta x \sim h / 2$
> Heisenberg Uncertainty Principle
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

The Uncertainty Principle

> Generic wave packet describing localised particle (7.6)

$$
\Psi(x, t)=\int A(k) \exp \{i(k x-\omega t)\} d k
$$

\rightarrow Sum of many $\exp \{\mathrm{i}(\mathrm{kx}-\omega \dagger)\}$ with complex amplitudes $A(\mathrm{k})$
 and spread Δk
> Uncertainty in $\mathrm{p}: \Delta \mathrm{p}$
> Now:
$\Delta p \Delta x \sim \hbar / 2$
> Revolution in physics:
$\Delta t \Delta E \sim \hbar / 2$
$>$ A particle cannot be localised both in position and momentum!

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

3D Particle in a box

$>$ Quantum theory suggests that a large amount of energy is required to contain a particle in a small volume
$>$ It arises from the uncertainty principle
$>$ In three dimensions, the infinite-well energies are quantised as:

$$
E=\left\{h^{2} / 8 m a^{2}\right\}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)
$$

\rightarrow The lowest energy is when $n_{x}=n_{y}=n_{z}=1$:

$$
E_{\text {min }}=\left\{3 h^{2} / 8 m a^{2}\right\}
$$

from which we can, for example, estimate the energy of an electron confined in an atom or a proton confined in a nucleus (Tutorial 2, Question 5)

Gaussian Wave Packet

2d free particle

> Minimum uncertainty wave packet: Gaussian $\sim \exp \left\{-x^{2} / 2 \sigma^{2}\right\}$
$>$ See VITAL for links to movies of wave packet motion

Particle Wave Equation: Summary

\rightarrow The wave function $\Psi(x, t)$ of a particle under the influence of the potential energy function $V(x, t)$ is the solution of the Schrödinger equation

$$
i \hbar \partial \Psi / \partial t=-\left\{\hbar^{2} / 2 m\right\} \partial^{2} \Psi / \partial x^{2}+V(x, t) \Psi
$$

which matches external boundary conditions
$>$ If $\mathrm{V}(x, t) \Rightarrow \mathrm{V}(x)$, i.e. the potential energy is time independent, then Ψ is stationary

$$
\Psi(x, t)=\Psi(x) \exp \{-i(E / \hbar) \dagger\} \quad E=\hbar \omega
$$ and $\psi(x)$ is a solution of the time independent Schrödinger equation

> A time independent potential energy $V(x)$ which localises a particle yields discrete quantised energies of the particle
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

8. Wave Dynamics of Particles: Bound States

> 8.1 Finite Square Well
> 8.2 Harmonic Oscillator
> 8.3 Zero Point Energy
> 8.4 3D Bound States
>8.5 3D Bound States \& Angular Momentum
>8.6 3D Harmonic Oscillator Revisited
> 8.7 The Hydrogen Atom

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Wave Dynamics: Bound States

$>$ We have already considered a particle in an infinitely deep potential well

- The particle is confined in a bound state
$>$ The energy of the particle is quantised
> Next consider a potential with a finite depth
> Finite square well potential

8.1 Finite Square Well Potential

>For the finite potential well, the Schrödinger equation gives a wave function with an exponentially decaying penetration into the classically forbidden region outside the box!

Since the wave function penetration effectively enlarges the box, the finite well energy levels are lower than those for the infinite well

Finite Square Well

\rightarrow In regions 1 and 3 , with $V=0$:
$-\left\{\hbar^{2} / 2 m\right\} \partial^{2} \Psi / \partial x^{2}=E \Psi \quad$ like "free particle" solution
> Try solutions of the form:

$$
\begin{align*}
& \Psi_{1}=A_{1} \exp \{i k x\}+B_{1} \exp \{-i k x\} \tag{8.1.1}\\
& \Psi_{3}=A_{3} \exp \{i k x\}+B_{3} \exp \{-i k x\} \tag{8.1.2}
\end{align*}
$$

with constants $A_{1}, B_{1}, A_{3}, B_{3}$ and where k is:

$$
\mathrm{k}=\mathrm{p} / \hbar=\sqrt{ }\{2 \mathrm{mE}\} / \hbar \quad \text { Energy } \mathrm{E}=\mathrm{T}
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Particle in Finite Square Well

Finite Square Well

> Particle has total energy:

$$
E=T+V
$$

kinetic + potential
$>$ Potential Well is of the form:

$$
\begin{array}{ll}
|x|>a / 2 & V=0 \\
|x|<a / 2 & V=-V_{0}
\end{array}
$$

$>$ Solve the time independent Schrödinger equation in regions 1, 2 and 3 for ψ

$$
k=\sqrt{ }\left\{2 m\left(E+V_{0}\right)\right\} / \hbar
$$

Boundary Conditions

\rightarrow Look for bound state, localised particle, which implies that in regions 1 and 3:

$$
\begin{array}{ll}
x \Rightarrow-\infty & |\psi|^{2} \Rightarrow 0 \\
x \Rightarrow+\infty & |\psi|^{2} \Rightarrow 0
\end{array}
$$

$>$ To achieve this we need "real" exponentials for $x \Rightarrow \pm \infty$ in equations (6.1.1) and (6.1.2), i.e. rapid exponential fall off of $|\psi|^{2}$ in the classically forbidden regions
$>$ This can be achieved by setting ik $=\alpha$ (i.e. $\mathrm{k}=-\mathrm{i} \alpha$)
> Then:

$$
\exp \{ \pm i k x\} \Rightarrow \exp \{ \pm \alpha x\}
$$

> And:

$$
|\psi|^{2} \Rightarrow \exp \{ \pm 2 \alpha x\}
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Overall Solution for All x

$>$ In region $1:|\psi|^{2} \Rightarrow 0, x \Rightarrow-\infty$

$$
\begin{equation*}
\Psi_{1}=A_{1} \exp \{+\alpha x\} \quad(k=-i \alpha) \tag{8.1.3}
\end{equation*}
$$

$>$ In region 2: $\mathrm{k}=\sqrt{ }\left\{2 \mathrm{~m}\left(\mathrm{E}+\mathrm{V}_{0}\right)\right\} / \hbar>0$

$$
\begin{equation*}
\Psi_{2}=A_{2} \exp \{i k x\}+B_{2} \exp \{-i k x\} \tag{8.1.4}
\end{equation*}
$$

$>$ In region $3:|\psi|^{2} \Rightarrow 0, x \Rightarrow+\infty$

$$
\begin{equation*}
\Psi_{3}=B_{3} \exp \{-\alpha \times\} \quad(k=-i \alpha) \tag{8.1.5}
\end{equation*}
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Matching Ψ at Sharp Changes in V

> The potential V changes abruptly at the intersections of regions $1-2$ and regions 2-3
$>$ The wave function ψ must be smooth (continuous) across these boundaries
$>$ The derivative of the wave function $\mathrm{d} \psi / \mathrm{d} \times$ must also be smooth across these boundaries
$>$ Why?
$>$ It works!
> Seen in all other wave phenomena

Continuity of Waveforms

> Waveforms in Quantum Mechanics must be "continuous"
$>\psi(x)$ must be single valued for all x
$>d \psi / d x$ must be single valued for all x particularly at boundaries

Overall Solution (cont)

\rightarrow Eliminate A_{1} from (8.1.6) and (8.1.7):

$$
(\alpha-i k) A_{2} \exp \{-i k a / 2\}=-(\alpha+i k) B_{2} \exp \{+i k a / 2\}
$$

\rightarrow Eliminate B_{3} from (8.1.8) and (8.1.9):

$$
(\alpha+i k) A_{2} \exp \{+i k a / 2\}=-(\alpha-i k) B_{2} \exp \{-i k a / 2\}
$$

$>$ Solution: $A_{2}=B_{2}=0$ (pointless!)
$>$ Or equations consistent with same unique ratio A_{2} / B_{2}

$$
-[(\alpha+i k) /(\alpha-i k)] \exp \{+i k a\}=-[(\alpha+i k) /(\alpha-i k)] \exp \{-i k a\}
$$

$>$ This reduces to:

$$
\begin{equation*}
2 \alpha i \sin \{k a / 2\}=-2 i k \cos \{k a / 2\} \tag{8.1.10}
\end{equation*}
$$

or

$$
\begin{equation*}
2 \alpha \cos \{k a / 2\}=2 k \sin \{k a / 2\} \tag{8.1.11}
\end{equation*}
$$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Overall Solution (cont)

\rightarrow Regions 1-2: $x=-a / 2$
$>$ Continuity of ψ

$$
\begin{equation*}
A_{1} \exp \{-\alpha a / 2\}=A_{2} \exp \{-i k a / 2\}+B_{2} \exp \{+i k a / 2\} \tag{8.1.7}
\end{equation*}
$$

$>$ Continuity of $\mathrm{d} \psi / \mathrm{d} x$
$\alpha A_{1} \exp \{-\alpha a / 2\}=i k A_{2} \exp \{-i k a / 2\}-i k B_{2} \exp \{+i k a / 2\}$
\rightarrow Regions 2-3: $x=+a / 2$
\rightarrow Continuity of ψ
$A_{2} \exp \{+i k a / 2\}+B_{2} \exp \{-i k a / 2\}=B_{3} \exp \{-\alpha a / 2\}$
$>$ Continuity of $\mathrm{d} \psi / \mathrm{dx}$
$i k A_{2} \exp \{+i k a / 2\}-i k B_{2} \exp \{-i k a / 2\}=-\alpha B_{3} \exp \{-\alpha a / 2\}$

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Overall Solution (cont)

$>$ From (8.1.10) and (8.1.11), the overall solution for ψ requires:

$$
\tan \{k a / 2\}=-k / \alpha \quad \text { and } \quad \tan \{k a / 2\}=\alpha / k
$$

$>$ Only discrete values of k are allowed - quantisation
$>$ The solution also requires:

$$
A_{2} / B_{2}=-[(\alpha+i k) /(\alpha-i k)] \exp \{+i k a\}
$$

$>$ It can be shown that:

$$
\begin{equation*}
A_{2} / B_{2}=-1 \text { if } \tan \{k a / 2\}=-k / \alpha \tag{8.1.8}
\end{equation*}
$$

$$
A_{2} / B_{2}=+1 \text { if } \tan \{k a / 2\}=\alpha / k
$$

\rightarrow Hence the solution in region 2 is:

$$
\begin{equation*}
\Psi_{2}=A_{2}[\exp \{i k x\} \pm \exp \{-i k x\}] \tag{8.1.9}
\end{equation*}
$$

i.e. $\Psi_{2}=2 A_{2} \cos \{k x\}$ or $2 i A_{2} \sin \{k x\}$

07/09/2011 PHYS255: Quantum \& Atomic Physics - E.S. Paul

Summary: Finite Well Solutions

> Solutions:
$1 \Psi \propto \exp \{\alpha x\}$
$2 \psi \propto \sin \{k x\}, \cos \{k x\}$
$3 \psi \propto \exp \{-\alpha x\}$
\rightarrow Parameters:

$$
\begin{aligned}
& \alpha=\sqrt{ }=2 m(-E) / \hbar\} \\
& \left.k=\sqrt{2} 2 m\left(V_{0}+E\right) / \hbar\right\}
\end{aligned}
$$

$>$ Continuity of $\psi, d \psi / d x$ at boundary
$>$ Harmonic form inside well $|x| \leq a / 2$
$>$ Dying exponentials outside well $|x|>a / 2$
$>$ Probability density $|\psi|^{2}$ extends beyond edge of potential
> Discrete set of (bound state) wave functions
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Graphical Solutions

Finite Well Energy Levels

$>$ What are the allowed energy levels?
> Conditions:

$$
\tan \{k a / 2\}=-k / \alpha \text { and } \tan \{k a / 2\}=\alpha / k
$$

with

$$
k=\sqrt{ }\left\{2 m\left(V_{0}+E\right) / \hbar\right\} \text { and } k / \alpha=\sqrt{ }\left\{\left(V_{0}+E\right) /-E\right\}
$$

$>$ Solution of complicated equations:

$$
\tan \left\{\left(\int\left\{2 m\left(V_{0}+E\right) / \hbar\right\}\right) a / 2\right\}=-\int\left\{\left(V_{0}+E\right) /-E\right\}
$$ and

$$
\left.\tan \left\{\left(\sqrt{2} 2 m\left(V_{0}+E\right) / \hbar\right\}\right) a / 2\right\}=\sqrt{ }\left\{-E /\left(V_{0}+E\right)\right\}
$$

$>$ Must solve graphically for $E(<0)$
$>$ A finite number of discrete (quantised) energies are found

Finite/Infinite Well Energies

> The energy levels for an electron in an infinite potential well of width 0.39 nm are shown to the left
> The energy levels for an electron in a finite potential well of depth 64 eV and width 0.39 nm are shown to the right

Harmonic Oscillator

> Time independent Schrödinger equation (7.10):

$$
-\left\{\hbar^{2} / 2 m\right\} d^{2} \psi / d x^{2}+\frac{1}{2} m \omega^{2} x^{2} \psi=E \psi
$$

> Rewrite:

$$
d^{2} \Psi / d x^{2}+\left\{2 m E / \hbar^{2}\right\} \psi-\left\{m^{2} \omega^{2} x^{2} / \hbar^{2}\right\} \psi=0
$$

$>$ Or:
$d^{2} \psi / d x^{2}+\beta \psi-\left\{x^{2} / \alpha^{4}\right\} \psi=0 \quad$ Hermite's equation
> Where:
$\beta=2 m E / \hbar^{2}$ and $\alpha^{2}=\hbar / m \omega$
> General solution:

$$
\psi(x)=\exp \left\{-x^{2} / 2 \alpha^{2}\right\}\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots\right)
$$

Gaussian
series
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

Harmonic Oscillator Solutions

\Rightarrow We expect a discrete set of solutions which do no \dagger diverge as $x \Rightarrow \infty$
\Rightarrow The series must not be infinite
$>$ It must be a polynomial
\Rightarrow There is no divergence if:
$\alpha^{2} \beta=2 n+1$ where n is a positive integer
> Solutions for each value of n, ψ_{n} give quantisation

$$
\begin{array}{ll}
n=0 & \Psi_{0}=c_{0} \exp \left\{-x^{2} / 2 \alpha^{2}\right\} \\
n=1 & \Psi_{1}=c_{1}(x / \alpha) \exp \left\{-x^{2} / 2 \alpha^{2}\right\} \\
n=2 & \Psi_{2}=c_{2}\left(2 x^{2} / \alpha^{2}-1\right) \exp \left\{-x^{2} / 2 \alpha^{2}\right\}
\end{array}
$$

$>r<r_{0}$: repulsion due to nucleus-nucleus
$>r>r_{0}$: attraction due to electron-nucleus
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul


```
Diatomic Molecule
\(\rightarrow\) Close to \(r=r_{0}\) make a Taylor expansion and keep only the
    leading terms in \(r-r_{0}\) :
    \(V(r)=V\left(r_{0}\right)+\left(r-r_{0}\right) d V / d r+\frac{1}{2}\left(r-r_{0}\right)^{2} d^{2} V / d r^{2}\)
\(>\) Since \(r=r_{0}\) is a minimum:
    \(d V / d r=0\)
> Hence:
    \(V(r)=V\left(r_{0}\right)+\frac{1}{2}\left(r-r_{0}\right)^{2} d^{2} V / d r^{2}\)
\(>\) This is a harmonic potential with:
    \(K=d^{2} V / d r^{2}\) and \(\omega=\sqrt{ }\{\mathrm{K} / \mathrm{m}\}\)
\(\rightarrow\) Therefore vibrational (harmonic) excitations of diatomic
    molecules occur with energies:
        \(E=\left(n+\frac{1}{2}\right) \hbar \omega+V\left(r_{0}\right)\)
07/09/2011

\section*{Diatomic Molecule: NaCl}
\(>\) Potential:
\[
V(r)=\left\{-e^{2} / 4 \pi \varepsilon_{0}\right\} \underset{\uparrow}{\left\{1 / r-\beta / r^{n}\right\}}
\]
attractive electron-nucleus repulsive nucleus-nucleus
\(>\) Interatomic distance: \(r_{0}=2.81 \times 10^{-10} \mathrm{~m}\)
\(\rightarrow\) Constant: \(n=9.4\)
\(>\) Differentiate at \(r_{0}\) (minimum)
\[
d V / d r=\left\{-e^{2} / 4 \pi \varepsilon_{0}\right\}\left\{-1 / r_{0}^{2}+n \beta / r_{0}^{n+1}\right\}=0
\]
> Hence:
\(\beta=r_{0} n-1 / n\)
> Also:
\(d^{2} V / d r^{2}=\left\{-e^{2} / 4 \pi \varepsilon_{0}\right\}\left\{2 / r_{0}^{3}+n(n+1) \beta / r_{0}^{n+2}\right\}=K\)
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

\section*{Diatomic Molecule: NaCl}
> Hence:
\[
K=\left\{-e^{2} / 4 \pi \varepsilon_{0}\right\}\left\{(1-n) / r_{0}{ }^{3}\right\}
\]
> Data:
\[
\left.\begin{array}{l}
e=1.6 \times 10^{-19} \mathrm{C} \\
\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{Fm}^{-1} \\
r_{0}=2.81 \times 10^{-10} \mathrm{~m} \\
n=9.4
\end{array}\right\} \quad \underline{K=87.3 \mathrm{~J} \mathrm{~m}^{-2}}
\]
> The vibrational energy is now given by
\[
\hbar \omega=\hbar J\{\mathrm{~K} / \mathrm{m}\}
\]
\(\rightarrow\) Note that \(m\) is the reduced mass of NaCl
\[
\begin{aligned}
m & =m(N a) \cdot m(C l) /\{m(N a)+m(C l)\} \\
& \sim 23 \times 37 /\{23+37\} \sim 14 a m u
\end{aligned}
\]

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

\section*{Diatomic Molecule: NaCl}
> Data:

\(\rightarrow\) This corresponds to an

> This corresponds to an infrared photon that can be absorbed or emitted as the molecule changes between vibrational levels
> Other types of excitation are also possible:
Rotational (microwave) Electronic (optical or UV)
\(\square\)

\subsection*{8.3 Zero Point Energy}

\section*{Motion in Various Potentials}
> Classical physics of a bound particle:
> Also on VITAL!
\(\rightarrow\) No energy quantisation
\(>\) minimum energy \(=0\)
\(>\) Quantum physics of a bound particle:
> Energy quantisation
\(>\) Minimum energy not zero
\(>\) For an infinite square well:
\[
E_{1}=h^{2} / 8 \mathrm{ma}^{2}
\]
> For a harmonic oscillator:
\[
E_{0}=\frac{1}{2} \hbar \omega
\]
> This minimum value of energy is called the "zero point" energy

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul
- \(>\) 1D motion in various wells
- \(>2 \mathrm{D}\) motion in a box> 2D harmonic oscillator

\section*{Zero Point Energy}
\(>\) If a particle is confined to be roughly in the range \(-a / 2 \leq x \leq+a / 2\)
then the uncertainty in its position is:
\[
\Delta x \sim a
\]
> From the Uncertainty Principle, its momentum cannot be specified to better than \(\Delta p \sim \hbar / a\)
\(>\) Therefore the momentum has to be at least this value: \(p \geq \Delta p \sim \hbar / a\)
\(>\) The corresponding energy is then:
\[
p^{2} / 2 m=E \geq \hbar^{2} / 2 m a^{2}
\]
\(>\) Zero point energy arises from quantum physics !
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

\subsection*{8.4 3D Bound States}
> Example: infinite potential well \(V(x, y, z)\)
\[
\left.\left.\begin{array}{l}
|x| \leq a / 2 \\
|y| \leq a / 2 \\
|z| \leq a / 2
\end{array}\right\} V(x, y, z)=0 \quad \begin{array}{l}
|x|>a / 2 \\
|y|>a / 2 \\
|z|>a / 2
\end{array}\right\} V(x, y, z) \Rightarrow \infty
\]
\(>\) The time dependent Schrödinger equation is now: \(-\left\{\hbar^{2} / 2 m\right\} \nabla^{2} \psi+V \psi=i \hbar \partial \psi / \partial \dagger\) where:
\[
\nabla^{2}=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}+\partial^{2} / \partial z^{2}
\]
\(>\) The time independent Schrödinger equation is:
\[
-\left\{\hbar^{2} / 2 m\right\} \nabla^{2} \psi+V \psi=E \psi
\]
\(\rightarrow\) Now a partial differential equation

\section*{3D Infinite Well}
\(>\) Outside the box: \(\mathrm{V} \Rightarrow \infty\) so:
\[
\psi=0
\]
> Inside the box:
\[
-\left\{\hbar^{2} / 2 m\right\}\left(\partial^{2} \psi / \partial x^{2}+\partial^{2} \psi / \partial y^{2}+\partial^{2} \psi / \partial z^{2}\right)=E \psi
\]
> Physics:
\(>\) motion in \(x\) is independent of...
\(>\) motion in \(y\) is independent of...
\(\Rightarrow\) motion in \(z\)
> Intuitive assumption to get trial solution
\(>\) Hence try a solution of the form:
\[
\psi=\psi_{x}(x) \psi_{y}(y) \psi_{z}(z)
\]

\section*{3D Infinite Well}
\(>\) Now:
\[
\begin{aligned}
& \partial^{2} \Psi / \partial x^{2}=\Psi_{y} \Psi_{z} d^{2} \Psi_{x} / d x^{2}, \\
& \partial^{2} \Psi / \partial y^{2}=\Psi_{x} \Psi_{z} d^{2} \Psi_{y} / d y^{2}, \\
& \partial^{2} \Psi / \partial z^{2}=\Psi_{x} \psi_{y} d^{2} \Psi_{z} / d z^{2}
\end{aligned}
\]
\(>\) Substitute into Schrödinger equation and divide through by \(\Psi_{x} \Psi_{y} \Psi_{z}\) :
\(-\left\{\hbar^{2} / 2 m\right\}\left\{1 / \Psi_{x}\right\}\left\{d^{2} \Psi_{x} / d x^{2}\right\} \quad\) function only of \(x\)
\[
-\left\{\hbar^{2} / 2 m\right\}\left\{1 / \Psi_{y}\right\}\left\{d^{2} \Psi_{y} / d y^{2}\right\} \quad \text { function only of } y
\]
\[
-\left\{\hbar^{2} / 2 m\right\}\left\{1 / \Psi_{z}\right\}\left\{d^{2} \Psi_{z} / d z^{2}\right\} \quad \text { function only of } z
\]
\[
=E=\text { constant }
\]
\(>\) Each of the three "degrees of freedom" - motion in \(x\), in \(y\), in z represent independent free particle motion

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

\section*{3D Infinite Well Solutions}
> Only possible scenario:
\[
\begin{aligned}
& -\left\{\hbar^{2} / 2 m\right\}\left\{d^{2} \Psi_{x} / d x^{2}\right\}=E_{x} \Psi_{x}, \\
& -\left\{\hbar^{2} / 2 m\right\}\left\{d^{2} \Psi_{y} / d y^{2}\right\}=E_{y} \Psi_{y}, \\
& -\left\{\hbar^{2} / 2 m\right\}\left\{d^{2} \Psi_{z} / d z^{2}\right\}=E_{z} \Psi_{z}
\end{aligned}
\]
\(>\) The total energy is:
\[
E=E_{x}+E_{y}+E_{z}
\]
\(\Rightarrow\) The solutions are already known:
\[
\Psi_{x} \propto \sin \left\{n_{x} \pi x / a\right\}, \Psi_{y} \propto \sin \left\{n_{y} \pi y / a\right\}, \Psi_{z} \propto \sin \left\{n_{z} \pi z / a\right\}
\]
\(>\) The total energy is thus:
> With:
\[
E=\left\{h^{2} / 8 m a^{2}\right\}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)
\]
\[
n_{x} \geq 1, n_{y} \geq 1, n_{z} \geq 1
\]

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

\section*{Energy Degeneracy}
\begin{tabular}{cccc} 
Energy & \(n_{x}\) & \(n_{y}\) & \(n_{z}\) \\
\(\left\{3 h^{2} / 8 m a^{2}\right\}\) & 1 & 1 & 1
\end{tabular} one state
\(\left.\begin{array}{lccc}\left\{6 h^{2} / 8 m a^{2}\right\} & 2 & 1 & 1 \\
\left\{6 h^{2} / 8 m a^{2}\right\} & 1 & 2 & 1 \\
\left\{6 h^{2} / 8 m a^{2}\right\} & 1 & 1 & 2\end{array}\right\}\) one energy, three states
\(\left.\begin{array}{llll}\left\{9 h^{2} / 8 m a^{2}\right\} & 2 & 2 & 1 \\
\left\{9 h^{2} / 8 m a^{2}\right\} & 2 & 1 & 2 \\
\left\{9 h^{2} / 8 m a^{2}\right\} & 1 & 2 & 2\end{array}\right\}\) one energy, three states
\(\Rightarrow\) Degeneracy arises since \(n_{x} n_{y} n_{z}\) can be combined in several ways to give same value of \(\left(n_{x}{ }^{2}+n_{y}^{2}+n_{z}{ }^{2}\right)\)

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

\section*{3D Harmonic Oscillator}
\(>\) Potential energy:
\[
V(x, y, z)=\frac{1}{2} K x^{2}+\frac{1}{2} K y^{2}+\frac{1}{2} K z^{2} \quad \text { same force constant } K
\]
\(\rightarrow\) Time dependent Schrödinger equation:
\[
\begin{aligned}
& -\left\{\hbar^{2} / 2 m\right\}\left\{\partial^{2} \Psi / \partial x^{2}\right\} \\
& \quad-\left\{\hbar^{2} / 2 m\right\}\left\{\partial^{2} \Psi / \partial y^{2}\right\} \\
& \quad-\left\{\hbar^{2} / 2 m\right\}\left\{\partial^{2} \Psi / \partial z^{2}\right\} \\
& \quad+\frac{1}{2} K\left(x^{2}+y^{2}+z^{2}\right) \Psi=E \psi
\end{aligned}
\]
\(>\) Try solution with independent \(x\) y \(z\) motion:
\(-\left\{\hbar^{2} / 2 m\right\}\left\{1 / \Psi_{x}\right\}\left\{d^{2} \Psi_{x} / d x^{2}\right\}+\frac{1}{2} K x^{2} \quad\) function only of \(x\)
\[
-\left\{\hbar^{2} / 2 m\right\}\left\{1 / \Psi_{y}\right\}\left\{d^{2} \Psi_{y} / d y^{2}\right\}+\frac{1}{2} K y^{2} \quad \text { function only of } y
\]
\[
-\left\{\hbar^{2} / 2 m\right\}\left\{1 / \Psi_{z}\right\}\left\{d^{2} \Psi_{z} / d z^{2}\right\}+\frac{1}{2} k z^{2}
\] function only of \(z\)
\[
=E=\text { constant }
\]

\section*{3D Harmonic Oscillator}
> Harmonic oscillator splits into three decoupled equations of linear harmonic form
> Solution for each of \(x y z\) is a solution of the 1D harmonic oscillator:
\[
\begin{array}{ll}
n_{x}=0 & \Psi_{x 0}=c_{0} \exp \left\{-x^{2} / 2 \alpha^{2}\right\} \\
n_{x}=1 & \Psi_{x 1}=c_{1}(x / \alpha) \exp \left\{-x^{2} / 2 \alpha^{2}\right\} \quad \text { etc... }
\end{array}
\]
\(\rightarrow\) The total energy is:
\[
E=E_{x}+E_{y}+E_{z} \text { i.e. } E=\left(n_{x}+n_{y}+n_{z}+3 / 2\right) \hbar \omega
\]
> With:
\[
n_{x} \geq 0, n_{y} \geq 0, n_{z} \geq 0 \text { and } \omega=\hbar \int\{K / m\}
\]
\(\rightarrow\) Zero point energy:
\[
3 / 2 \hbar \omega
\]

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

\section*{3D Anisotropic Harmonic Oscillator}
\(>\) What happens if \(K\) is different for \(x, y\) and \(z\), i.e.:
\[
V(x, y, z)=\frac{1}{2} K_{x} x^{2}+\frac{1}{2} K_{y} y^{2}+\frac{1}{2} K_{z} z^{2} \quad ?
\]
\(>\) There are now three distinct frequencies associated with each of \(x y z\) :
\[
\left.\left.\left.\omega_{x}=\hbar \sqrt{ } K_{x} / \mathrm{m}\right\}, \omega_{y}=\hbar \sqrt{ } \mathrm{K}_{y} / \mathrm{m}\right\}, \omega_{z}=\hbar \sqrt{ }=\mathrm{K}_{z} / \mathrm{m}\right\}
\]
\(>\) The total energy is now:
\[
E=\hbar\left\{\left(n_{x}+\frac{1}{2}\right) \omega_{x}+\left(n_{y}+\frac{1}{2}\right) \omega_{y}+\left(n_{z}+\frac{1}{2}\right) \omega_{z}\right\}
\]
> Example: Nilsson model to describe deformed nuclei:
> prolate/oblate shapes with \(x=y \neq z\)
\(>\) triaxial shapes with \(x \neq y \neq z\)

\subsection*{8.5 3D Bound States \& Angular Momentum}
> The time independent Schrödinger equation is:
\[
-\left\{\hbar^{2} / 2 m\right\} \nabla^{2} \psi+V \psi=E \psi
\]
> Work in spherical polar coordinates \(r \theta \varphi\) instead of Cartesian coordinates \(x\) y \(z\) :

\[
\begin{aligned}
& x=r \sin \{\theta\} \cos \{\varphi\} \\
& y=r \sin \{\theta\} \sin \{\varphi\} \\
& z=r \cos \{\theta\}
\end{aligned}
\]

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

\section*{Spherical Polar Coordinates}
> It can be shown that (but not easily !): don't remember
\[
\begin{aligned}
\nabla^{2}=\{ & \left\{1 / r^{2}\right\} \partial / \partial r\left(r^{2} \partial / \partial r\right) \\
& +\left\{1 / r^{2}\right\}\{1 / \sin \{\theta\}\} \partial / \partial \theta(\sin \{\theta\} \partial / \partial \theta) \\
& +\left\{1 / r^{2}\right\}\left\{1 / \sin ^{2}\{\theta\}\right\} \partial^{2} / \partial \varphi^{2}
\end{aligned}
\]
\(>\) For most \(V(r, \theta, \varphi)\) the solution is complicated but...
> For solutions of the form \(\mathrm{V}(\mathrm{r})=\mathrm{V}(\mathrm{r})\) (central potential function of radial coordinate only), the solutions have generic features

\section*{Angular Momentum}
> The Schrödinger equation becomes:
\[
\begin{aligned}
&-\left\{\hbar^{2} / 2 m\right\} {\left[\left\{1 / r^{2}\right\} \partial / \partial r\left(r^{2} \partial \psi / \partial r\right)\right.} \\
&+\left\{1 / r^{2}\right\}\{1 / \sin \{\theta\}\} \partial / \partial \theta(\sin \{\theta\} \partial \psi / \partial \theta) \\
&+\left.\left\{1 / r^{2}\right\}\left\{1 / \sin ^{2}\{\theta\}\right\} \partial^{2} \Psi / \partial \varphi^{2}\right] \\
&+ V(r) \Psi=E \psi
\end{aligned}
\]
\(>\) The potential energy function \(V(r)\) does not vary with \(\theta\) and \(\varphi\)
- For non-radial motion of the particle, no energy/momentum changes from potential to kinetic or vice-versa
> Angular momentum is conserved (no preferred direction in space)

\section*{Radial Solutions}
\(>\) Decouple motion in \(r\) (radial) and motion in \((\theta, \varphi)\) (rotation) and look for a solution:
\[
\psi=R(r) Y(\theta, \varphi)
\]
\(>\) Then:
\(-\left\{\hbar^{2} / 2 m\right\}\left[\left\{y / r^{2}\right\} d / d r\left(r^{2} d R / d r\right)\right.\)
\(+\left\{R / r^{2}\right\}\{1 / \sin \{\theta\}\} \partial / \partial \theta(\sin \{\theta\} \partial Y / \partial \theta)\)
\[
\left.+\left\{R / r^{2}\right\}\left\{1 / \sin ^{2}\{\theta\}\right\} \partial^{2} y / \partial \varphi^{2}\right]
\]
+ V(r)RY = ERY
\(>\) Divide through by RY and multiply through by r :
\[
\begin{array}{cc}
-\left\{\hbar^{2} / 2 m\right\}\left[\{1 / R\} d / d r\left(r^{2} d R / d r\right)\right. & \text { function only of } r \\
+\{1 /(Y \sin \{\theta\})\} \partial / \partial \theta(\sin \{\theta\} \partial Y / \partial \theta) & \begin{array}{c}
\text { function only of } \\
+\left\{1 /\left(Y \sin ^{2}\{\theta)\right\} \partial^{2} Y / \partial \varphi^{2}\right]
\end{array} \\
+r^{2} V(r)=r^{2} E & \theta \varphi \\
\text { function only of } r
\end{array}
\]

PHYS255: Quantum \& Atomic Physics - E.S. Paul

\section*{Radial Solutions}
> Rearrange:
\[
\begin{aligned}
-\left\{\hbar^{2} / 2 m\right\} & \{1 / R\} \\
=-\left\{\hbar^{2} / 2 m\right\} & {[\{1 /(Y \sin \{\theta\})\} \partial / \partial \theta(\sin \{\theta\} \partial Y / \partial \theta)} \\
& \left.+\quad\left\{1 /\left(Y \sin ^{2}\{\theta\}\right)\right\} \partial^{2} Y / \partial \varphi^{2}\right] \\
= & \text { constant }
\end{aligned}
\]
\(>\) For radial motion in \(r\) :
\[
-\left\{\hbar^{2} / 2 m\right\}\left\{1 / r^{2}\right\} d / d r\left(r^{2} d R / d r\right)+\left[V(r)-N / r^{2}\right] R=E R
\]
\(>\) For rotational motion in \(\theta \varphi\) : centrifugal potential
\[
\begin{array}{r}
-\left\{\hbar^{2} / 2 m\right\}[\{1 / \sin \{\theta\}\} \partial / \partial \theta(\sin \{\theta\} \partial Y / \partial \theta) \\
\left.+\quad\left\{1 / \sin ^{2}\{\theta\}\right\} \partial^{2} Y / \partial \varphi^{2}\right]=-N Y \\
\hline
\end{array}
\]

\section*{Radial Solutions}
> This might look horrible! Use intuition !
\(>\) Substituting \(R(r)=\{1 / r\} \chi(r)\) in (8.5.1), the equation can be cast in the form:
\[
-\left\{\hbar^{2} / 2 m\right\} d^{2} \chi / d r^{2}+\left[V(r)-N / r^{2}\right] \chi=E \chi
\]
which looks like a 1D Schrödinger equation for the "radial wave function" \(\chi=r R\) in a modified (central) potential energy function
> Similarly try to recast (8.5.2) into a form of Schrödinger's equation, namely a second order partial differential of \(Y(\theta, \varphi)\) equal to a number with dimension of energy multiplying \(У(\theta, \varphi)\)

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

\section*{Angular Solutions}
\(\rightarrow\) From (8.5.1) \(\mathrm{N} / \mathrm{r}^{2}\) has dimension of energy
> So rewrite (8.5.2) as:
\[
-\left\{\hbar^{2} / 2 m r^{2}\right\}[\{1 / \sin \{\theta\}\} \partial / \partial \theta(\sin \{\theta\} \partial y / \partial \theta)
\]
\(\left.+\left\{1 / \sin ^{2}\{\theta\}\right\} \partial^{2} Y / \partial \varphi^{2}\right]=-\left\{N / r^{2}\right\} Y\)
> Now:
\(m r^{2}\) is just the moment of inertia \((\mathscr{F})\) of the particle's rotation about the origin
> So we have:
\[
-\left\{\hbar^{2} / 2 \mathscr{F}\right\} \nabla_{\theta_{\varphi}}^{2} y=E_{\theta \varphi} y
\]
>Form of Schrödinger equation for particle motion about the origin, i.e. rotation

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

\section*{Radial Energies}
> Radial solution-ask a mathematician:
\[
-\left\{\hbar^{2} / 2 m\right\} d^{2} \chi / d r^{2}+\left[V(r)-N / r^{2}\right] \chi=E \chi
\]
\(\rightarrow\) Solution in detail depends on \(V(r)\)
> Generic results:
\(>\mathrm{N}\) depends on l (angular momentum)
> Bound states quantised:
\[
E=E_{n \ell}
\]
\(>n\) integer \(\geq 1\), \(\ell\) integer \(\geq 0\)
\(>(n, \ell)\) label "energy sub-shell"
\(>n\) labels an "energy shell"

\section*{Summary: Particle in Central Potential}
\(>\) Introduce polar coordinates \(r \theta \varphi\) to Schrödinger equation:
\[
-\left\{\hbar^{2} / 2 m\right\} \nabla^{2} \psi+V(r) \psi=E \psi
\]
\(>\) Conservation of angular momentum allows decoupling of radial and angular motion:
\[
\psi=R(r) Y(\theta, \varphi)
\]
\(>\) Radial wave function:
\[
\chi=r R \quad \text { radial probability density }|\chi|^{2}
\]
\(\rightarrow\) Radial motion:
\[
-\left\{\hbar^{2} / 2 m\right\} d^{2} \chi / d r^{2}+\left[V(r)-N / r^{2}\right] \chi=E \chi
\]
> Angular motion:
\[
-\left\{\hbar^{2} / 2 \mathscr{F}\right\} \nabla_{\theta \varphi}^{2} Y(\theta, \varphi)=-\left\{N / r^{2}\right\} Y(\theta, \varphi)=E_{\theta \varphi} Y
\]

07/09/2011

\section*{Angular Energies}
\(\rightarrow\) Rotational solution - ask a mathematician


Spherical Harmonics:

\(l\) integer \(0,1,2, \ldots\)
\(m\) integer:
\(-\ell,-\ell+1, \ldots ., \ldots, l-1, \ell\)
\(>\) Legendre Polynomials
\[
Y_{\ell m}(\theta, \varphi)=P_{\ell}(\cos \{\theta\}) \exp \{i m \varphi\}
\]
\(>\) Quantised energy of rotation:
\[
E_{\theta \varphi}=\left\{\ell(l+1) \hbar^{2}\right\} /\{2 \mathscr{F}\} \quad-N=-\left\{l(l+1) \hbar^{2}\right\} /\{2 m\}
\]
\(>\) Energy degeneracy of \(\{2 \ell+1\}\), no dependence on \(m\)
> Quantum physics of rotation
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

\section*{Nuclear Rotational Band}

\(>\) Quantised energy of rotation:
\(E=\{I(I+1)\} \hbar^{2} / 2 \mathscr{F}\)
> Gamma ray energy \(\Delta E=\{2 I-1\} \hbar^{2} / \mathscr{T}\)
> Gamma ray spacing \(\Delta^{2} E=4 \hbar^{2} / \mathscr{T}\)
= constant
> Most nuclei are prolate (rugby ball shape) and can rotate
>Gamma rays are emitted between levels of a "rotational band" taking away \(2 \hbar\) of spin each ("superdeformation" in nuclei discovered by Liverpool physicists at Daresbury !)

07/09/2011
PHyS255: Quantum \& Atomic Physics - E.S. Paul

\section*{Rules for Central Potentials}
\(\rightarrow\) Particle energy is quantised according to:
\[
E=E_{n l} \quad n \geq 1, l \geq 0
\]
\(\Rightarrow l\) specifies the quantised angular momentum \({ }^{2}\left(L^{2}\right)\) of the particle:
\[
L^{2}=l\{l+1\} \hbar^{2}
\]
\(\Rightarrow m(-l,-l+1, \ldots 0, \ldots l-1, \ell)\) specifies the projection \(L_{z}\) of \(L\) on a fixed direction \(z\)
\[
L_{z}=m \hbar
\]
\(\rightarrow\) Common central potentials are:
\(>\) free particle
\(V(r)=0\)
\(>\) constant
\(V(r)=\) constant
\(>\) harmonic oscillator \(V(r)=\frac{1}{2} \mathrm{Kr}^{2}\)
> "Particle in a box" is not a central potential
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

\section*{Gammasphere (Gamma Ray Spectrometer)}

\section*{Quantised Angular Momentum}
\(>\) For angular motion energy quantisation:
\[
E_{\theta \varphi}=\left\{l(\ell+1) \hbar^{2}\right\} /\{2 \mathscr{F}\} \quad l=0,1,2, \ldots
\]
where \(\mathscr{F}\) is the moment of inertia
> Hence:
\(\ell(\ell+1) \hbar^{2}=\left(\right.\) angular momentum) \({ }^{2}\)
\(\rightarrow\) Free rotation \(\Rightarrow\) angular motion
\(\Rightarrow\) Quantised energies of rotation \(\Rightarrow\) quantised angular momentum:
\[
\int\{\ell(\ell+1)\} \hbar
\]
\(>\) Remember for the free linear motion of a particle, quantised energies only occur if confined in a box
\(\rightarrow\) Quantised momentum \(p=\hbar k=n \pi \hbar / a\)
07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

\subsection*{8.6 3D Harmonic Oscillator Revisited}
> Harmonic oscillator potential:
\[
V(x, y, z)=\frac{1}{2} K\left\{x^{2}+y^{2}+z^{2}\right\}
\]
\(>\) If force constant is spherically symmetric \(V\) is central:
\[
V(r)=\frac{1}{2} K r^{2}
\]
\(>\) Therefore the angular part of the wave function is a set of spherical harmonics corresponding to quantised angular momentum:
\[
L^{2}=l\{l+1\} \hbar^{2}
\]
\(>\) Energy quantisation is determined by the radial equation:
\[
-\left\{\hbar^{2} / 2 m\right\} d^{2} \chi / d r^{2}+\left[\frac{1}{2} K r^{2}-\left\{l(l+1) \hbar^{2}\right\} / 2 m r^{2}\right] \chi=E \chi
\]
\(>\) Energies:
\[
\begin{gathered}
E_{n l} \Rightarrow E=(n+3 / 2) \hbar \omega \quad n \geq 0 \text { integer } \\
n=0 \quad l=0, n=1 \quad l=1, n=2 \quad l=0,2 .
\end{gathered}
\]

\section*{HO Degeneracy}
- An identical energy level structure emerges using the radial solution as using the \(x y z\) approach
> as it must !
\(>\) States used in the \(x y\) z solution are linear combinations of states in the \(r \theta \varphi\) solution
\(>\) the number of states is the same
> Subshells \((n, \ell)\) within a shell \(n\) are degenerate
\(>\) accidental degeneracy

\section*{Harmonic Oscillator Degeneracy}

Energy / ( \(\hbar \omega\) ) \(n \begin{array}{lll}n & l & m\end{array}\)
3/2 00000 one state
\(\left.\begin{array}{llll}5 / 2 & 1 & 1 & -1 \\ 5 / 2 & 1 & 1 & 0\end{array}\right]\)
\(\left.\begin{array}{lllr}5 / 2 & 1 & 1 & 0 \\ 5 / 2 & 1 & 1 & +1\end{array}\right\}\) one energy, three states
5/
\(\begin{array}{llll}7 / 2 & 2 & 0 & 0\end{array}\)
\(7 / 2 \quad 2 \quad 2 \quad-2\)
\(\left.\begin{array}{llll}7 / 2 & 2 & 2 & -1\end{array}\right\}\) one energy,
\(\left.\begin{array}{cccc}7 / 2 & 2 & 2 & 0 \\ 7 / 2 & 2 & 2 & +1\end{array}\right\} \quad\) six states
\(\begin{array}{llll}7 / 2 & 2 & 2 & +1\end{array}\)
7/
PHYS255: Quantum \& Atomic Physics - E.S. Paul

\subsection*{8.7 Hydrogen Atom}
\(>\) One electron in bound state with a proton with central potential:
\(V(r)=\left\{-e^{2} / 4 \pi \varepsilon_{0} r\right\} \quad\) Coulomb potential
\(>\) Schrödinger equation:
\(-\left\{\hbar^{2} / 2 \mathscr{F}\right\} \nabla_{\theta \varphi}{ }^{2} Y_{\mid m}(\theta, \varphi)=\left\{\ell(\ell+1) \hbar^{2} / 2 \mathscr{F}\right\} Y_{l m}(\theta, \varphi)\)
> And:
\[
\begin{align*}
& -\left\{\hbar^{2} / 2 m\right\} d^{2} \chi / d r^{2}  \tag{8.7.2}\\
& +\left[\left\{-e^{2} / 4 \pi \varepsilon_{0} r\right\}-\left\{\ell(\ell+1) \hbar^{2}\right\} / 2 m r^{2}\right] \chi=E \chi \\
& \hline
\end{align*}
\]
> Energy sub-shell structure:
\[
\begin{aligned}
& E_{n e}=\left\{-m e^{4} / 32 \pi^{2} \varepsilon_{0}{ }^{2} \hbar^{2}\right\}\left\{1 / n^{2}\right\} \\
& n=2 \\
& n=3 \quad l=0,1,2 \\
& \text { PHYS255: Quantum \& Atomic Physics - E.S. Paul }
\end{aligned}
\]

\section*{\(n \ell\) Quantum Numbers}
> Principal quantum number \(n\) is written as a digit
> Angular momentum quantum number \(l\) is written as:
\(\left.\begin{array}{llc}l=0 & s & \text { "sharp" } \\ l=1 & \mathrm{p} & \text { "principal" } \\ l=2 & \mathrm{~d} & \text { "diffuse" } \\ l=3 & \mathrm{f} & \text { "fundamental" } \\ l=4 & g \\ l=5 & \mathrm{~h} \\ l=6 & \mathrm{i}\end{array}\right\}\) now alphabetical

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul
199

\section*{Hydrogen Atom Degeneracies}
\begin{tabular}{cllll} 
Energy \(/\left\{\mathrm{me}^{4} / 32 \pi^{2} \varepsilon_{0} \hbar^{2}\right\}\) & \(n\) & \(l\) & \(m\) & degeneracy \\
-1 & 1 & 0 & 0 & one \\
& & & & \\
\(-1 / 4\) & 2 & 0 & 0 & \\
\(-1 / 4\) & 2 & 1 & \(\pm 1,0\) & four \\
& & & & \\
\(-1 / 9\) & 3 & 0 & 0 & \\
\(-1 / 9\) & 3 & 1 & \(\pm 1,0\) & nine \\
\(-1 / 9\) & 3 & 2 & \(\pm 2, \pm 1,0\) &
\end{tabular}
> Sub-shells within an energy shell are degenerate

07/09/2011
PHYS255: Quantum \& Atomic Physics - E.S. Paul

\section*{Rydberg Constant}
> Energy level structure is often written in terms of the Rydberg constant \(R\) :
> where:
\[
E_{n}=-R h c / n^{2}
\]
\[
\begin{aligned}
R & =\left\{m e^{4}\right\} /\left\{8 \varepsilon_{0} h^{3} c\right\} \\
& =13.6 \mathrm{eV} / \mathrm{hc}
\end{aligned}
\]
\(>\) So:
\(E_{n}=-13.6 / n^{2}\) electron-volt


\section*{Where is the Electron?}
> Electron probability density:
\[
|\psi|^{2}=|R Y|^{2}
\]
\(>\) Probability of finding the electron in a small region of the atom volume:
\[
r^{2} d r d \Omega=r^{2} d r d(\cos \theta) d \varphi \quad \Omega=\text { solid angle }
\]
is:
\[
\begin{aligned}
& \left|R_{n e}(r) Y_{l m}(\theta, \varphi)\right|^{2} r^{2} d r d \Omega \\
& \quad=\left|r R_{n e}(r)\right|^{2}\left|Y_{l m}(\theta, \varphi)\right|^{2} d r d \Omega \\
& \quad=\left|\chi_{n e}(r)\right|^{2}\left|Y_{l m}(\theta, \varphi)\right|^{2} d r d \Omega
\end{aligned}
\]
> Ask a mathematician!
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Radial Dependence} \\
\hline \multicolumn{4}{|l|}{> Radius of first Bohr orbit:} \\
\hline \multicolumn{4}{|c|}{\(\mathrm{a}_{0}=4 \pi \varepsilon_{0} \hbar^{2} / \mathrm{me} \mathrm{e}^{2}=0.0529 \mathrm{~nm}\)} \\
\hline \multicolumn{4}{|c|}{\(R_{10}=2\left\{1 / a_{0}\right\}^{3 / 2} \exp \left\{-r / a_{0}\right\}\)} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\(\begin{aligned} R_{20} & =[1 / 2 J\{2\}]\left\{1 / a_{0}\right\}^{3 / 2}\left\{2-r / a_{0}\right\} \text { exp }\left\{-r / a_{0}\right\}\end{aligned}\)}} \\
\hline & & & > Radial probability density: \\
\hline \multicolumn{4}{|c|}{\(P(r)=\left|\chi_{n e}\right|^{2}=\left|r R_{n e}\right|^{2}\)} \\
\hline \multicolumn{4}{|l|}{> Asr \(\Rightarrow 0\) :} \\
\hline \multicolumn{4}{|c|}{\(\chi_{n e}=r R_{n e} \Rightarrow 0\)} \\
\hline & \(\mathrm{R}_{\mathrm{n}=0} \neq 0\) & \(s\) wave densit & \\
\hline & \(\mathrm{R}_{n \pm 0}=0\) & p, d.... wave d & \\
\hline 07/09/2011 & PHYS255: Quantum & Physics E.E.S. Paul & 205 \\
\hline
\end{tabular}

Radial Distributions: \(n=2\)


207
```


[^0]: PHYS255: Quantum \& Atomic Physics - E.S. Paul

