7. Four problems with nonlinear objective functions solved by linear methods.

1. Constrained Games. Find z; for j =1,...,n to maximize

1<i<p

n
min Z CijTj (1)
=1
subject to the constraints as in the general maximum problem

n
Zaijmjgbi fOl‘izl,...,k’
j=1

n (2)
Zaijmj:b,- fori:k+1,...,n
Jj=1

and
z; >0 forj=1,...,¢ 3)
(z; unrestricted forj=0+4+1,...,n)
This problem may be considered as a generalization of the matrix game problem from
player I's viewpoint, and may be transformed in a similar manner into a general linear
program, as follows. Add A to the list of unrestricted variables, subject to the constraints

n
)\—ZcijijO fori=1,...,p (4)
j=1

The problem becomes: maximize A subject to the constraints (2), (3) and (4).

Example 1. The General Production Planning Problem (See Zukhovitskiy
and Avdeyeva, “Linear and Convex Programming”, (1966) W. B. Saunders pg. 93) There
are n activities, Aj,...,A,, a company may employ using the available supplies of m
resources, Ri,...,Ry. Let b; be the available supply of R; and let a;; be the amount
of R; used in operating A; at unit intensity. Each activity may produce some or all of
the p different parts that are used to build a complete product (say, a machine). Each
product consists of Ny parts #1,... ,N,, parts #p. Let ¢;; denote the number of parts #1i
produced in operating A; at unit intensity. The problem is to choose activity intensities
to maximize the number of complete products built.

Let z; be the intensity at which A; is operated, j =1,...,n. Such a choice of inten-
sities produces Z?zl cijT; parts #1, which would be required in building Z?zl cijxj [ N;
complete products. Therefore, such an intensity selection may be used to build

min Zcijmj/Ni (5)
j=1

1<i<p
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complete products. The amount of R; used in this intensity selection must be no greater
than b;,

mn
Zaija}jgbi fori=1,...,m (6)
j=1

and we cannot operate at negative intensity
z; >0 for j=1,...,n (7)

We are required to maximize (5) subject to (6) and (7). When p = 1, this reduces to the
Activity Analysis Problem.

Exercise 1. In the general production planning problem, suppose there are 3 activi-
ties, 1 resource and 3 parts. Let by =12, a;1 =2, a;p =3 and a13 =4, N1 =2, Np =1,
and N3 = 1, and let the ¢;; be as given in the matrix below. (a) Set up the simplex
tableau of the associated linear program. (b) Solve. (Ans. z1 = z3 = z3 = 4/3, value =
8.)

A Ay Aj
part #1 /2 4 6
C=part#2| 2 1 3
part #3 \ 1 3 2
2. Minimizing the sum of absolute values. Find y; for i = 1,...,m, to minimize
P m
D> wibis b ®)

subject to the constraints as in the general minimum problem

m

Zyiaz'jZCj forj=1,...,¢
=1

m (9)
Z%‘%':Cj forj=4+1,...,n
i=1

and
yi = 0 fori=1,...,k (10)
(y; unrestricted fori=k+1,...,m.)
To transform this problem to a linear program, add p more variables, 4,41, . .. s Ym4p s

where y,4; is to be an upper bound of the jth term of (8), and try to minimize
> %1 YUm+j- The constraints

m
IZ%%’ —bjl SYmt; forj=1,...,p
i=1
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are equivalent to the 2p linear constraints

m
Zyibij_bjgym—f—j forj=1,...,p

—Zyibij"!‘bjgym—{—j forj=1,...,p
=1

The problem becomes minimize >%_, ym+; subject to the constraints (9), (10) and (11).
In this problem, the constraints (1 1) imply that ¥my1,...,Ym+p are nonnegative, so it does
not matter whether these variables are restricted to be nonnegative or not. Computations
are generally easier if we leave them unrestricted.

Example 2. It is desired to find an m-dimensional vector, y, whose average distance
to p given hyperplanes

m
Zyisz :bj fOl’jZl,...,p

is a minimum. To find the (perpendicular) distance from a point ({,... L2} to the plane
>y yibi; = by, we normalize this equation by dividing both sides by d; = (3.1, z])1/ 2
The distance is then |Zz_1 ypb;; — )|, where bi; = bij/dj and b, = b; / d; . Therefore, we
are searching for y1,...,ym to rnmimize

—Z‘Zyz

le—

There are no constraints of the form (9) or (10) to the problem as stated.

Exercise 2. Consider the problem of finding y; and y, to minimize ly1 + y2 — 1] +
12y1 —y2 + 1| + |y1 — y2 — 2| subject to the constraints y; > 0 and y > 0. (a) Set up the
simplex tableau of the associated linear program. (b) Solve. (Ans. (y1,y2) = (0,1), value
=3.)

3. Minimizing the maximum of absolute values. Find Y1, .-, Ym tO minimize

max IZ yibsj — I (12)

1<5<p

subject to the general constraints (9) and (10). This objective function combines features
of the objective functions of 1. and 2. A similar combination of methods transforms this
problem to a linear program. Add u to the list of unrestricted variables subject to the
constraints

Izyz'bz'j——bj'ﬁu for j=1,...,p
=1
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and try to minimize ;. These p constraints are equivalent to the following 2p linear
constraints

m

Zyibz'j—bjﬁﬂ forj=1,...,p
o (13)
‘“Zyz‘bz‘j+bjSM forj=1,...,p

i=1
The problem becomes: minimize £ subject to (9), (10) and (13).

Example 3. Chebyshev Approximation. Given a set of p linear affine functions
in m unknowns,

m
wj(yhaym)zzyzbw_b] forjzlv)p) (14)
i=1
find a point, (3?,...,42), for which the maximum deviation (12) is a minimum. Such a

point is called a Chebyshev point for the system (14), and is in some sense a substitute
for the notion of a solution of the system (14) when the system is inconsistent. Another
substitute would be the point that minimizes the total deviation (8). If the functions (14)
are normalized so that Y .-, b?j =1 for all j, then the maximum deviation (12) becomes
the maximum distance of a point 7 to the planes

m
Zyibij:bj for j=1,...,p.
i=1

Without this normalization, one can think of the maximum deviation as a “weighted”
maximum distance. (See Zukhovitskiy and Avdeyeva, pg. 191, or Stiefel “Note on Jordan

Elimination, Linear Programming, and Tchebycheff Approximation” Numerische Mathe-
matik 2 (1960), 1-17.

Exercise 3. Find a Chebyshev point (unnormalized) for the system

Yi(y,92) =y +y2 — 1
Ya(y1,y2) =2y —y2+ 1
Y3(y1,92) = y1 —y2 — 2

by (a) setting up the associated linear program, and (b) solving. (Ans. 1, =0, y» = —1 /2,
value = 3/2.)

4. Linear Fractional Programming. (Charnes and Cooper, “Programming with
linear fractional functionals”, Naval Research Logistics Quarterly 9 (1962), 181-186.) Find
x = (®1,...,%n)" to maximize

c'r +a
it 15
d’z + (3 (15)
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subject to the general constraints (2) and (3). Here, ¢ and d are n-dimensional vectors
and « and (3 are real numbers. To avoid technical difficulties we make two assumptions:
that the constraint set is nonempty and bounded, and that the denominator d™x + 3 is
strictly positive throughout the constraint set.

Note that the objective function remains unchanged upon multiplication of numerator
and denominator by any number ¢ > 0. This suggests holding the denominator fixed say
(d™x + B)t =1, and trying to maximize c’xt + at. With the change of variable z = xt,
this becomes embedded in the following linear program. Find z = (21, ... ,2p) and t to
maximize

c'z+at

subject to the constraints

dz+p8t=1

n
Zaijzjgbit fOl‘iZl,...,k
j=1

n
Zaijzj:bit fori=k+1,...,m
Jj=1

and
t>0
z; >0 forj=1,...,¢
z; unrestricted forj=0+1,...,n.

Every value achievable by a feasible & in the original problem is achievable by a
feasible (z,t) in the linear program, by letting ¢t = (d"z + 8)~! and z = xt. Conversely,
every value achievable by a feasible (z,%) with ¢ > 0 in the linear program is achievable
by a feasible x in the original problem by letting « = z/¢t. But ¢ cannot be equal to zero
for any feasible (z,t) of the linear program, since if (z,0) were feasible, z + 6z would be
feasible for the original program for all § > 0 and any feasible x, so that the constraint
set would either be empty or unbounded. (One may show ¢ cannot be negative either, so
that it may be taken as one of the unrestricted variables if desired.) Hence, a solution of
the linear program always leads to a solution of the original problem.

Example 4. Activity analysis to maximize rate of return. There are n ac-
tivities Ai,..., A, a company may employ using the available supply of m resources
Ri,...,Ry. Let b; be the available supply of R; and let a;; be the amount of R; used
in operating A; at unit intensity. Let c; be the net return to the company for Operating
Aj; at unit intensity, and let d; be the time consumed in operating A; at unit intensity.
Certain other activities not involving Ri,...,R,, are required of the company and yield
net return « at a time consumption of 8. The problem is to maximize the rate of return
(15) subject to the restrictions Az < b and & > 0. We note that the constraint set is
nonempty if b > 0, that it is generally bounded (for example if a;; > 0 for all ¢ and j),
and that d'x + 3 is positive on the constraint set if d > 0 and 6 >0.

40




