- 2.23 The table in Fig. P2.23(a) gives the relationship between the terminal voltage and current of the practical constant voltage source shown in Fig. P2.23(b).
 - a) Plot v_s versus i_s .
 - b) Construct a circuit model of the practical source that is valid for $0 \le i_s \le 24$ A, based on the equation of the line plotted in (a). (Use an ideal voltage source in series with an ideal resistor.)
 - c) Use your circuit model to predict the current delivered to a 1 Ω resistor connected to the terminals of the practical source.
 - d) Use your circuit model to predict the current delivered to a short circuit connected to the terminals of the practical source.
 - e) What is the actual short-circuit current?
 - f) Explain why the answers to (d) and (e) are not the same.

Figure P2.23

$v_s(V)$	$i_s(A)$	
24	0	is
22	8	-
20	16	
18	24	CVS
15	32	•
10	40	
0	48	
(a)		(b)