3. Let I be an interval in R and assume $f: I \rightarrow R$ is twice differentiable at all points of I. Suppose that $a \in I, f^{\prime}(a)=0$ and $f^{\prime}(x) \neq 0$ for all $x \in I, x \neq a$. Prove: If $f^{\prime \prime}(a)>0$, then $f(c)$ is the minimum value of f in I; that is $f(c) \leq f(x)$ for all $x \in I$.
