1. For any $\mathbf{x} \in \mathbb{C}^{n}$, prove

$$
\begin{gathered}
\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{1} \leq n\|\mathbf{x}\|_{\infty} \\
\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{2} \leq \sqrt{n}\|\mathbf{x}\|_{\infty} \\
\|\mathbf{x}\|_{2} \leq\|\mathbf{x}\|_{1} \leq \sqrt{n}\|\mathbf{x}\|_{2}
\end{gathered}
$$

2. Let $\mathrm{A} \in \mathbb{C}^{n \times n}$ be invertible. Prove that

$$
\frac{1}{\operatorname{lub}\left(A^{-1}\right)}=\min _{\mathbf{y} \in \mathbb{C}_{x}^{r}} \frac{\|\mathrm{Ay}\|}{\|y\|}
$$

3. Suppose that $\mathrm{A}, \mathrm{B} \in \mathbb{C}^{n \times n}$ and A is non-singular and B is singular. Let $\|\cdot\|$ be an subordinate matrix norm. Prove that

$$
\frac{1}{\operatorname{cond}(A)} \leq \frac{\|A-B\|}{\|A\|}
$$

where $\operatorname{cond}(A)=\|A\| \cdot\left\|A^{-1}\right\|$.
Note: This formula is useful in a couple of ways. First, it says that if A is close in norm to a singular matrix B, then cond(A) will be very large. Thus, nearly singular matrices are ill-conditioned. Second, this formula gives an upper bound on $\operatorname{cond}(A)^{-1}$.
4. Let $\mathrm{A} \in \mathbb{C}^{n \times n}$ be invertible. Prove that

$$
\frac{1}{\operatorname{cond}_{2}(A)}=\inf _{\operatorname{det}(B)=0} \frac{\|A-B\|_{2}}{\|A\|_{2}}
$$

5. Suppose

$$
A=\left[\begin{array}{ll}
1.0000 & 2.0000 \\
1.0001 & 2.0000
\end{array}\right]
$$

(a) Calculate cond $(A):=\|A\|_{1} \cdot\left\|A^{-1}\right\|_{1}$ and $\operatorname{cond}_{\infty}(A):=\|A\|_{\infty} \cdot\left\|A^{-1}\right\|_{\infty}$.
(b) Use the result of problem 1 to obtain upper bounds on $\operatorname{cond}_{1}(A)^{-1}$ and also on cond $_{\infty}(A)^{-1}$.
(c) Suppose that you wish to solve $\mathbf{A x}=\mathbf{b}$, where $\mathbf{b}=\left[\begin{array}{l}3.0000 \\ 3.0001\end{array}\right]$. Instead of \mathbf{x} you obtain the approximation $\mathbf{x}^{\prime}=\mathbf{x}+\delta \mathbf{x}=\left[\begin{array}{l}0.0000 \\ 1.5000\end{array}\right]$. For this approximation you discover $\mathbf{b}^{\prime}=\mathbf{b}+\delta \mathbf{b}=\left[\begin{array}{c}3.0000 \\ 3.0000\end{array}\right]$, where $\mathbf{A} \mathbf{x}^{\prime}=\mathbf{b}^{\prime}$. Calculate $\|\delta \mathbf{x}\|_{1} /\|\mathbf{x}\|_{1}$ exactly. (You will need the exact solution, of course). Then use the general estimate

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \operatorname{cond}(\mathrm{A}) \frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}
$$

to obtain an upper bound for $\|\delta \mathbf{x}\|_{1} /\|\mathbf{x}\|_{1}$. How good is $\|\delta \mathbf{b}\|_{1} /\|\mathbf{b}\|_{1}$ as indicator of the size of $\|\delta \mathbf{x}\|_{1} /\|\mathbf{x}\|_{1}$.
6. Suppose

$$
\mathrm{A}=\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]
$$

where a and b are real numbers. Show that the subordinate matrix norms satisfy $\|A\|_{1}=\|A\|_{2}=\|A\|_{\infty}$.
7. Suppose that

$$
\mathrm{A}=\left[\begin{array}{cc}
a & b \\
b & -a
\end{array}\right]
$$

where a and b are real numbers. Show $\|\mathrm{A}\|_{2}=\left(a^{2}+b^{2}\right)^{1 / 2}$.
8. Show that if λ is an eigenvalue of $A^{H} A$, where $A \in \mathbb{C}^{n \times n}$, then

$$
0 \leq \lambda \leq\left\|\mathrm{A}^{H}\right\|\|\mathrm{A}\|
$$

9. Suppose that $\mathrm{A} \in \mathbb{C}^{n \times n}$ is invertible. Show that

$$
\operatorname{cond}_{2}(\mathrm{~A})=\sqrt{\frac{\lambda_{n}}{\lambda_{1}}}
$$

where λ_{n} is the largest eigenvalue of $\mathrm{B}:=\mathrm{A}^{T} \mathrm{~A}$, and λ_{1} is the smallest eigenvalue of B.
10. Suppose that $A \in \mathbb{C}^{n \times n}$ is invertible. Use the last two problems to show that

$$
\operatorname{cond}_{2}(A) \leq \sqrt{\operatorname{cond}_{1}(A) \operatorname{cond}_{\infty}(A)}
$$

