Sampling Distributions * Test of hypotheses about p for a large samples:
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(Note: If n = 30, population must be normal )
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Hypothesis Tests about the Mean and
Proportion

» Critical Value Approach:

Step 1: State the null and alternative hypotheses.

Step 2: Select the distribution to use.

Step 3: Determune the rejection and non-rejection regions.
(Le. critical value(s) of test statistic)

Step 4: Calculate the observed value of the test statistic.

Step 5: Make a decision and write a conclusion.

+ Test of hypotheses about p when ¢ is known:
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Chi-Square Tests

+ (zoodness of fit test:

HO - The proportions (percentages) in the categories follow
the distribution hypothesized

H1 - The proportions (percentages) in the categories do not follow
the distribution hypothesized
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Expected frequency of a category:
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Degrees of freedom: df = k— 1 where & =number of categories.

+ Contingency Tables — Test of Independence

HU - The row and column variables of contingency table

are independent (1.e. not related)
H1 . The row and column variables of contingency table
are NOT independent (1.e. are related)
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Tr’ = the sum of all the values in sample 7

71 = the total number of values m all samples = n, + iy + g ...
¥ x = the sum of all the values 1n all samples =
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Z.\'E = the sums of squares of all the values in all the samples

Simple Linear Regression

+ Simple linear regression model: y =4+ Bx+¢
+ Estimated regression model:

v=a+bx
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+ Confidence interval for B:



df =(R-1)}C-1)
where R = # of row categories and C = # of column categories
in contingency table.

* Contingency Tables — Test of Homogeneity

HD - The proportions of elements that belong to different categories

are the same 1n two or more different populations
H, - The proportions of elements that belong to different categories

are NOT the same in two or more different populations
(Note: Calculations and degrees of freedom same as for test of independence)
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(Note: Confidence interval for population standard deviation is found by

taking square roots of confidence interval for population vanance )
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+ Linear correlation coefficient:



Analysis of Variance
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* Test of hypotheses about p :
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+ Coefficient of determination:
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