A review for the second exam

Theorem, important examples and definitions to review

1. The definition of distribution and tempered distribution
2. The definition of derivative of a distribution, Fourier transform, product of a distribution and a function, convolution of a distribution and a function, support of a distribution, fundamental solution of a differential equation, with appropriate examples
3. The definition of convergence in distribution sense
4. The distributional derivative of order m of a function f which is differentiable m times coincides with the distribution $u_{f(m)}$
5. The product of g and u_{f} is $u_{f g}$
6. The convolution of g and u_{f} is $u_{f * g}$
7. $f * \delta_{0}=f$
8. The FT of δ_{0} is $\equiv 1$
9. The solution in $\mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$ of $\Delta u=0$ are polynomials
10. The sequence $k^{n} e^{-\pi k^{2}|x|^{2}}$ converge to δ_{0} in distribution sense
11. The real and imaginary parts of a holomorphic function are harmonic

Problems

1. Let $f(x)=\frac{1-\cos x}{x}$; evaluate $f * f * f * f$.
2. Evaluate the derivative, (in distribution sense) of $[x]$ (the integer part of x). Evaluate its Fourier transform too.
3. Evaluate the derivative (in distribution sense) of $f(x)=\sum_{k=0}^{\infty} \frac{e^{k x}}{k}$. Evaluate (if possible) its Fourier transform too
4. Find the derivative, in distribution sense, of the function $f(x)=\left\{\begin{array}{ll}e^{x} & \text { if } x<a, \\ e^{-x} & \text { if } x \geq a\end{array}\right.$.
5. Let $f_{k}(x)=\sin (k x)$. Find the limit, in distribution sense, of $u_{f_{k}}$.
6. Show that the function $u(x, y)=e^{x} \cos y$ is harmonic. This is not a polynomial, but this does not contradict the Theorem proved in class because ...
7. Prove or disprove: the solutions in $\mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$ of the equation $\Delta u=p(x)$, where $p(x)$ is a polynomial, are polynomials.
8. Verify that $u=\sum_{k=-\infty}^{\infty} \frac{1}{k} \delta_{k}$ is a tempered distribution. What is its support? Then evaluate the convolution of u and $f(x)=\sin x$.
9. Find the support of the distributions a) $u(\psi)=\int_{-\pi}^{\pi}|x| \psi^{(4)}(x) d x$ and b) $u(\psi)=\psi(0)+\psi^{\prime}(1)+|x|$
10. Evaluate the Fourier transform of the fundamental solution of $P(D) u-$ $2 \Delta u+u$, where $P(D) u=\sum_{j=1}^{n}\left(\partial_{j}^{4} u+2 \partial_{j}^{2} u+u\right)$
11. a) Let $u=\operatorname{Re} f$ and $v=\operatorname{Im} f$, where $f(x, y)=f(x+i y)$ is holomorphic in C. Recalling that $\partial_{x} f+i \partial_{y} f=0$, verify that a) $u v$ is harmonic. and b) $\nabla u \cdot \nabla v=0$.
c) Use the previous problem to show that $e^{2\left(x^{2}-y^{2}\right)} \cos (x y) \sin (x y)$ is harmonic.
12. Find a and b for which $P(x, y)=a x\left(x^{2}-y^{2}\right)+b y(x y)$ is harmonic
