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(Please follow the direction of the question. Thanks.)

[image: image4.png]EXAMPLE 2, In order to find f (1) when

tanhs _ sinhs
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F(s)=

we note that F(s) has isolated singularities at s = 0 and at the zeros (Sec. 34)

_v:(i +n7'(>i (n=0,x1,%£2,...)
2
of cosh s. We list those singularities as
50=0 and s,=2 0T = 2noDT o)
2 2

Then, formally,

e
8) fy= Fes[e"F(s)] +, {Res[e'"F(S)] + Re_s[e‘”F(s)]lA

$=s0 S=S5y S=S,

n=1
Division of Maclaurin series yields the Laurent series representation

I sinhs 1 1 T
F(s)=—" =—-—-5+--- ()<.v<—).
© s2 coshs s ( s 2

which tells us that sq = 0 is a simple pole of F(s), with residue unity. Thus
) Res[e* F(s)] = Res F(s) =1,
$=s0 s=5¢

according to expression (3).
The residues of F(s) at the points s, (7 = 1, 2, . . .) are readily found by applying
the method of Theorem 2 in Sec. 69 for identifying simple poles and determining the




(Continued….)

[image: image5.png]residues at such points. To be specific, we write
F(s)= £is) where p(s)=sinhs and ¢q(s)= s2 cosh s
q(s)
and observe that
sinhs, = sinh[i(nn - %)] =i sin(mr - %) =—icosnm = (—1)"i £0.
Then, since

pls,) =sinhs, 0, q(s,) =0, and g'(s,) =s"sinhs, #0,

we find that

plsy) _ 1 4 1
q'(s,)  s2 72 (2n—1)?

n=12,...).

Res F(s)

[Compare Example 3 in Sec. 69.] The identities
sinhs =sinhs and coshs=coshs

(see Exercise 11, Sec. 34) ensure that F(s) = F(5) at points of analyticity of F(s).
Hence s, is also a simple pole of F(s), and expression (4) can be used to write

Res [¢" F(5)] + Res [e" F(s)]

2 Re G . ! ¥ cxp|:1' (@n — l)m“
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Finally, by substituting expressions (9) and (10) into equation (8), we arrive at
the desired result:

on — D

(11 f(f)*l—iiécos( (t>0)
T omr i en-12 2 :

EXAMPLE 3. We consider here the function

_ sinh(xs"/?)

(12) F(s)= ——
() s sinh(s1/2)

0<x<1,




[image: image6.png]where 5'/2 denotes any branch of this double-valued function. We agree, however, to
use the same branch in the numerator and denominator, so that
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(13) F(s)

when s is not a singular point of F(s). One such singular point is clearly s = 0. With
the additional agreement that the branch cut of s'/2 does not lie along the negative real
axis, so that sinh(s/2) is well defined along that axis, the other singular points occur
if s¥/2 = &nwi (n=1,2, . ..). The points

sp=0 and s,=—nr? n=1,2,...)

thus constitute the set of singular points of F(s). The problem is now to evaluate the
residues in the formal series representation

(14) f= Rcs[e"F(s)] + Z Res[e“F(s)]

n=l

Division of the power series on the far right in expression (13) reveals that s is
a simple pole of F(s), with residue x. So expression (3) tells us that

(15) Res[e* F(s)] = x.
§=30
As for the residues of F(s) at the singular points s, = —n?7% (n=1,2,...), we
write

where p(x)=sinh(xs'/2) and q(s)=ssinh(sl/2).

pls)
F
©=1o

Appealing to Theorem 2 in Sec. 69, as we did in Example 2, we note that
pls,) =sinh(xs)?) £0, q(s,) =0, and ¢'(s,) = —s /2 cosh(sy/?) # 0;

and this tells us that each s,, is a simple pole of F(s), with residue

Resl”(s):M 2 ( D sinnmx,
s=5, q'(sy) w n

So, in view of expression (3),

16) Res[e"F(s)]—e“‘" Res Fsy= 2. D -nine
b4 n

sinamx.

Substituting expressions (15) and (16) into equation (14), we arrive at the function

(17) fO=x+= Z( 1)”e_"z"z' sinnrx  (r > 0).
n

n[




