Homework 1- part II. Due Wed, Sept. 22

- 1. How would the construction of the Lebesgue measure in \mathbf{R}^2 change if we assume at the beginning that the measure of the unit square $[0,1] \times [0,1]$ is =2? What would the measure of a circle of radius 1 be? Why?
- 2. Prove that the set $S = [0,1] \times \{0\}$ is Lebesgue measurable in \mathbb{R}^2 and $m^*(S) = 0$
- 3. Recall that the **support** of a function $f : \mathbf{R}^n \to \mathbf{R}$ is the closure of the set $\{x \in \mathbf{R}^n : f(x) = 0\}$. Prove that if $f : \mathbf{R}^n \to \mathbf{R}^n$ has support in a set of Lebesgue measure =0, then $\int_{\mathbf{R}^n} f(x) dx = 0$.

(this problem is not easy, but you can try first and then look for the proof e.g. in the book pages)

- 4. a) Evaluate $\int_{\mathbf{R}^2} xy \chi_{\{[0,1] \times [0,1]\}} dm^*(x,y)$, (or if you prefer, $\int_{[0,1] \times [0,1]} xy dm^*(x,y)$). b) Evaluate $\int_{\mathbf{R}^2} xy \chi_{\{[0,1] \times [0,1] - \mathbf{Q}^2\}} dm^*(x,y)$.
- 5. Prove that the function $f(x) = \frac{\sin x}{x}$ is in $L^p(\mathbf{R})$ for every 1 . $Use the fact that <math>|f(x)| \le \dots$ when $|x| \le \frac{\pi}{2}$ and $|f(x)| \le \dots$ when $|x| > \frac{\pi}{2}$.