Homework 1- part II. Due Wed, Sept. 22

1. How would the construction of the Lebesgue measure in \mathbf{R}^{2} change if we assume at the beginning that the measure of the unit square $[0,1] \times[0,1]$ is $=2$? What would the measure of a circle of radius 1 be? Why?
2. Prove that the set $S=[0,1] \times\{0\}$ is Lebesgue measurable in \mathbf{R}^{2} and $m^{*}(S)=0$
3. Recall that the support of a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is the closure of the set $\left\{x \in \mathbf{R}^{n}: f(x)=0\right\}$. Prove that if $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ has support in a set of Lebesgue measure $=0$, then $\int_{\mathbf{R}^{n}} f(x) d x=0$.
(this problem is not easy, but you can try first and then look for the proof e.g. in the book pages)
4. a) Evaluate $\int_{\mathbf{R}^{2}} x y \chi_{\{[0,1] \times[0,1]\}} d m^{*}(x, y)$, (or if you prefer, $\int_{[0,1] \times[0,1]} x y d m^{*}(x, y)$).
b) Evaluate $\int_{\mathbf{R}^{2}} x y \chi_{\left\{[0,1] \times[0,1]-\mathbf{Q}^{2}\right\}} d m^{*}(x, y)$.
5. Prove that the function $f(x)=\frac{\sin x}{x}$ is in $L^{p}(\mathbf{R})$ for every $1<p \leq \infty$. Use the fact that $|f(x)| \leq \ldots$ when $|x| \leq \frac{\pi}{2}$ and $|f(x)| \leq \ldots$ when $|x|>\frac{\pi}{2}$.
