[image: image1.png]4. Write z =re'Y, where 0 < r < 1, in the summation formuta that was derived in the
example in Sec. 52. Then, with the aid of the theorem in Sec. 52, show that
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when 0 < r < 1. (Note that these formulas are also valid when r = 0.)




(Please use the example and the theorem provided….both of them.)
The example in Sec. 52:

[image: image2.png]EXAMPLE. With the aid of remainders, it is easy to verify that
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We need only recall the identity (Exercise 10, Sec. 7)
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and it is clear from this that the remainders py(z) tend to zero when [z| < 1 but not
when |z| > 1. Summation formula (10) is. therefore, established.





The Theorem is on the next page.
Thm in Sec. 52: 
[image: image3.png]Theorem. Suppose thatz,=x, +iy,(n=12,..)and § =X +iY. Then
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This theorem tells us, of course, that one can write
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whenever it is known that the two series on the right converge or that the one on the
left does.




