[image: image1.png]4. Let a function f be continuous in a closed bounded region R, and let it be analytic and
not constant throughout the interior of R. Assuming that f(z) # 0 anywhere in R, prove
that | f(z)] has a minimum value m in R which occurs on the boundary of R and ncver
in the interior. Do this by applying the corresponding result for maximum values (Sec.
50) to the function g(z) = 1/f(z).




(The following material is relevant to the problem above….You might need to read it…)
[image: image2.png]50. MAXIMUM MODULUS PRINCIPLE

In this section, we derive an important result involving maximum values of the moduli
of analytic functions. We begin with a needed lemma.

Lemma. Suppose that | f(z)| < |f(zg)| at each point z in some neighborhood
|z ~ zg| < £ inwhich f is analytic. Then f(z) has the constant value f(zq) throughout
that neighborhood.
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To prove this, we assume that f satisfies the stated conditions and let z, be any
point other than z in the given neighborhoad. We then let o be the distance between
zy and zq. If €, denotes the positively orented circle |z — zo| = p, centered at z; and
passing through z, (Fig. 68), the Cauchy integral formula tells us that

M f(20)=—L/ [@d
C

27i Je, 2= 2p
and the parametric representation
1=z0+pe®  (0<a<2m)

for C, enables us to write equation (1) as

T on
We note from expression {2) that when a function is analytic within and on a given
circle, its value at the center is the arithmetic mean of its values on the circle. This
result is called Gauss's mean value theorem.
From equation (2), we obtain the inequality
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On the other hand, since
@) If o+ 06N = 1 f ()] (0 =6 =2n),
we find that
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or
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The integrand in this last integral is continuous in the variable €; and, in view of
condition (4), it is greater than or equal to zero on the entire interval 0 < 8 < 2m.
Because the value of the integral is zero, then, the integrand must be identically equal
to zero. That is,

(©) Ifzo+ e =1f)t  (0<8=2m).

This shows that | f(z)| = | f (zg)| for all points z on the circle |z — 2ol = p.

Finally, since z| is any point in the deleted neighborhood 0 < |z — z5] < €, we
see that the equation | f(z)] = | f(zp)| is, in fact, satisfied by all points z lying on any
circle |z — zgl = p, where 0 < p < e. Consequently, | f{z)[ = | f{zp)| everywhere in
the neighborhood |z — z3] < €. But we know from Exercise 7(b), Sec. 24, that when the
modulus of an analytic function is constant in a domain, the function itself is constant
there. Thus f(z) = f(zp) for each poiat z in the neighborhood, and the proof of the
lemma is complete.

This lemma can be used to prove the following theorem, which is known as the
maximum modulus principle.

Theorem. If a function [ is analytic and not constant in a given domain D, then
| f(2)| has no maximum value in D. That is, there is no point zg in the domain such
thar | f(2)] < | f(zp) for all points z in i.

Given that f is analytic in D, we shall prove the theorem by assuming that | f(z)|
does have a maximum value at some point zg in D and then showing that f(z) must
be constant throughout D.

The general approach here is similar to that taken in the proof of the lemma in
Sec. 26. We draw a polygonal line L lying in D and extending from z, to any other
point P in D. Also, d represents the shortest distance from points on L to the boundary
of D. When D iy the entire plane, d may have any positive value. Next, we observe
that there is a finite sequence of points

200 2225 -+ 5 Tpmr L
along L such that z, coincides with the point P and

lzg — el < d *k=12,...,n)
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The integrand in this last integral is continuous in the variable 8; and, in view of
condition (4), it is greater than or equal to zero on the entire interval () <8 < 27,
Because the valve of the integral is zero, then, the integrand must be identically equal
to zero. That is,

(©) Ifzo+ 0 =1f )] (V=8 =<2m).

This shows that | f(2)| = | f(zg)| for all points z on the circle |z — zg| = p.

Finally, since z, is any point in the deleted neighborhood 0 < |z — zp| < &, we
see that the equation | f(z)| = | f(zg)| is, in fact, satisfied by all points z lying on any
circle {z — zgl = p, where 0 < p < ¢. Consequently, | f(2)] = | f(zg)| everywhere in
the neighborhood |z — zg| < £. But we know from Exercise 7(b), Sec. 24, that when the
modulus of an analytic function is constant in a domain, the function itself is constant
there. Thus f(z) = f{zy) for each point z in the neighborhood, and the proof of the
lemma is complete.

This lemma can be used to prove the following theorem, which is known as the
maximum modulus principle.

Theorem. If a function f is analytic and not constant in a given domain D, then
| f(2)| has no maximum value in D. That is, there is no point 2 in the domain such
that | f(2)| < | f(zp)| for all points z in it

Given that f is analytic in D, we shall prove the theorem by assuming that | f(z)|
does have a maximum value at some point zy in D and then showing that f(z) must
be constant throughout D.

The general approach here is similar to that taken in the proof of the lemma in
Sec. 26. We draw a polygonal line L lying in D and extending from z, to any other
point P in D. Also, d represents the shortest distance from points on L to the boundary
of D. When D is the entire plane, d may have any positive value. Next, we observe
that there is a finite sequence of points
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along L such that z, coincides with the point P and

lgg — 24—yl < d k=1,2,...,n).
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On forming a finite sequence of neighborhoods (Fig. 69)

No. Ny Ny o N, N,

where each Ny has center z; and radius d, we see that f is analytic in each of these
neighborhoods, which are all contained in D, and that the center of each neighborhood
N, (k=1,2,..., n) lies in the neighborhood N, _,.

Since | f(z)] was assumed to have a maximum value in [ at zg, it also has a
maximum value in Ny at that point. Hence, according to the preceding lemma, f(z)
has the constant value f(zq) throughout Ng. In particular, /' (z)) = f(zy). This means
that | f(2)| < | f(zy)] for each point z in N}; and the lemma can be applied again, this
time telling us that

fz)= f(z))= f(zp)

when z is in N|. Since z; isin N|, then, f(z;) = f(zp). Henee | f(2)] < | f(z;)] when
z is in Np; and the lemma is once again applicable, showing that

f@2h= flzz) = flzp)

when z is in ¥,. Continuing in this manner, we eventually reach the neighborhood N,
and arrive at the fact that f(z,,) = f(z¢).

Recalling that z,, coincides with the point P, which is any point other than z; in
D, we may conclude that f(z) = f(zq) for every point z in /3. Inasmuch as f(z) has
now been shown to be constant throughout /1, the theorem is proved.

If a function f that is analytic at each point in the interior of a closed hounded
region R is also continuous throughout R, then the modulus | f(z)| has a maximum
value somewhere in R (Sec. 17). That is, there exists a nonnegative constant M such
that | f(z)] < M for all points z in R, and cquality holds for at least one such point.
If f is a constant function, then | f(z)] = M for all z in R. If, however, f(z) is not
constant, then, according to the maximum modulus principle, | f(z)| # M for any
point z in the interior of R. We thus arrive at an important corollary of the maximum
modulus prineiple.




[image: image7.png]Corollary. Suppaose that a function f is continuous on a closed bounded region R
and that it is analytic and not constant in the interior of R. Then the maximum value
of | f(2)} in R, which is always reached, occurs somewhere on the boundary of R and
never in the interior.

EXAMPLE. Let R denote the rectangular region 0 <x < 7, 0 < y < 1. The corol-
lary tells us that the modulus of the entire function f(z) = sin z has a maximum value
in R that occurs somewhere on the boundary, and not in the interior, of R. This can be
verified directly by writing (see Sec. 33)

@)=y sin? x + sinh? y
and noting that, in R, the term sin® x is greatest when x = 77/2 and that the increasing
function sinh? y is greatest when y = 1. Thus the maximum value of | f (z)} in R occurs
at the boundary point z = (;r/2, 1) and at no other point in R (Fig. 70).
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FIGURE 70

When the function f in the corollary is written f(z) = u{x, y) +iv(x, y), the
component function u(x, y) also has a maximum value in R which is assumed on
the boundary of R and never in the interior, where it is harmonic (Sec. 25). For the
composite function g(z) = expl f(z)]is continuous in R and analytic and not constant
in the interior. Consequently, its modulus |g(z)| = exp[u(x, y}], which is continuous
in R, must assume its maximum value in R on the boundary. Because of the increasing
nature of the exponential function, it follows that the maximum value of u(x, y) also
occurs on the boundary.

Properties of minimum values of | f (z)] and u(x, y) are treated in the exercises.




