(1) Evaluate the line integral

$$
\int_{C} \boldsymbol{F} \cdot \boldsymbol{d} \boldsymbol{r}
$$

where $\boldsymbol{F}(x, y)=(1+2 x y) \boldsymbol{i}+\left(1+x^{2}\right) \boldsymbol{j}$ and $C$ is the curve parameterised by

$$
\boldsymbol{r}(t)=t \boldsymbol{i}+\sin \left(\frac{\pi}{2} t^{2}\right) \boldsymbol{j}, \quad 0 \leq t \leq 1
$$

(2) Let $C$ be a circle of radius 1 centred at the point $(x, y)=(1,0)$. Consider the vector field $\boldsymbol{F}(x, y)=x \boldsymbol{i}+x(1+y) \boldsymbol{j}$. Calculate the two line integrals over $C$,

$$
\oint_{C} \boldsymbol{F} \cdot \boldsymbol{T} d s \text { and } \oint_{C} \boldsymbol{F} \cdot \boldsymbol{n} d s
$$

where $\boldsymbol{T}$ is the unit tangent vector to $C$ traversed in an anticlockwise direction, and $\boldsymbol{n}$ is a unit normal vector to $C$ directed away from the centre of the circle.
(3) Evaluate the line integral

$$
\oint_{C}\left(\left(y^{2}-x\right) d x+(3 x+y) d y\right)
$$

where $C$ is the boundary of the region in the $x-y$ plane enclosed by the parabola $y=x^{2}$ and the line $y=1$, traversed in an anticlockwise direction.
(4) Find the area of the part of paraboloid $y=x^{2}+z^{2}$ that lies inside the cylinder $x^{2}+z^{2}=1$.

