Solutions to the problems from Lecture 2.

1. The key to understand this problem lies in the following fact:

If a sequence of numbers x,, is decreasing, then either the sequence
decreases all the way to —oo, or it has a finite limit.

In other words, if x1 > o > x3 > ... etc, and it is bounded from below, then it
must have a finite limit. This fact we accept intuitively; for more details we’d
need a course in Analysis.

So for this problem what we outlined in parts b), ¢), and d), are the following
steps: in b) we show that the only possible limit is v/2 (but there may not be a
limit at all). In ¢) we show that x1, xa, etc, are all bounded from below by the
value v/2. In d) we show that the sequence is decreasing. From the reasoning
outlined in the paragraph above, the sequence will have a limit, and that limit
will necessarily be equal to v/2.

Proof of b). Since we assume z,, — L, then x,,1 — L also. Substituting L for
both values in the recursive formula and then solving for L we find that L? = 2.
This has two possible solutions, namely L = v/2 and L = —/2. This second
case is impossible since our seed is 2y = 1, which is positive, and the recursive
formula will only give us positive values.

Proof of ¢). Work backwards from what you want to prove until you arrive at
a true formula, taking care that all steps are reversible!!!! If the steps are not
reversible, then this process does not work.

V2 < ;<x+i> (1)

A

22 < v+ (2)
W2r < 2?42 (3)
0 < 22—2V2z+2 (4)
0 < (z-v2)7? (5)

The last is a true statement (a square can’t ever be negative), and all steps are
reversible. The problem step is between the second and third equations, because
we multiplied by x. Since z is positive that did not change the direction of the
inequality, and the steps are reversible.

Proof of d). Like in ¢), work backwards from what you want to prove until you
arrive at /2 < x, taking care that all steps are reversible.

Here is a different, more elegant proof for parts c¢) and d). For part c), let
f(z) = 3(z 4+ 2/z). We want to show f(z) > V2 if z > 0. Taking derivatives
we get f'(z) = £(1 —2/a?), and f”(z) = 2/2%. Since the second derivative is
always positive for x > 0, the graph is concave up. The first derivative is zero



when = = /2, and consequently that value is a global minimum. This means

that f(z) > f(v2) = V2.

For d) we set g(z) =  — f(z). We want to show that g(z) > 0 if z > /2.
We find that g(v/2) = 0, and that ¢'(z) = % +2/x2, which is always positive.
Therefore g(x) is strictly increasing, and so g(z) > 0 if x > /2.

2. The vector whose entries are all equal to 1 is what we have in mind here.
Since the rows of M add up to 1, then Mwv will be equal to v again.

Here is the reason for this exercise. The important matrices are the stochas-
tic matrices. They have columns which add up to 1, not rows. For stochastic
matrices we would like to answer the following question: do they have an equi-
librium? Namely, if A is a stochastic matrix, can we find a vector v such that
Av = v? This question seems difficult to solve, but here is a fact from Linear
Algebra to help us:

If a matrix A has an equilibrium (Av = v), then the transpose matrix
A' also has an equilibrium (A*w = w), and vice-versa.

(In Linear Algebra language: A and A? have the same eigenvalues.)

So instead of showing that a stochastic matrix A has an equilibrium we instead
show that A® = M has an equilibrium. This is much simpler, because the rows of
M add up to 1, and the vector all formed by 1’s is the equilibrium configuration.

3. a) Here are the equations (remember that the first and last nodes have fixed
values 5 and 3, respectively).

_az(n) 5
az(n+1) = 32 + 3
as(n+1) = QQén) + a4én)

~az(n) 3
a4(n + 1) = 32 + 5

b) The matrix can be read from the above equations, by reading the coefficients
of the various terms (the coefficient is zero if the term is not present). So

0 1/2 0
M= 1/2 0 1/2
0 1/2 0

¢) Like in question 1b), we use the recursive formulas, replacing as(n) by as,
az(n) by as, etc. We obtain a system with three equations and three unknowns,
and solving the system will give us as = 9/2, ag =4, ay = 7/2.

4. a) The equations for as(n+1), az(n+1), and ag(n+1) are like before, except
that the 5 is now replaced by a1(n), and the 3 is replaced by as(n). The new



equations are

a(n+1) = +

as(n+1) = +

b) Stack the equations on top of each other, with the (n + 1) guys on the left,
and the (n) guys on the right, then add them all up. Because on the right you
get half-values, but each appearing twice, the end result is

ai(n+ 1)+ +as(n+1)=ar(n) + -+ as(n).

By induction, this means that the sum of all the nodes is always the same. Since
at time zero they sum to 17, that is the answer.

¢) Reading from the equations:

/2 1/2 0 0 0
/2 0 1/2 0 0
M=| 0 1/2 0 1/2 0
0 0 1/2 0 1/2
0o 0 0 1/2 1/2

Please note that this is a stochastic matrix.

d) Use the same trick of substituting a;(n) by its limit aq, etc, in the recursive
system. That will give us five equations and five unknowns. It turns out that
one of the equations is redundant (can be obtained from the others), so you
need an extra equation. The extra equation is given by a1 +as + ...+ a5 = 17,
and if you are careful in solving this system you will find your answer to be 17/5
for all five nodes.

5. The graph looks like a ladder resting against a wall at forty-five degrees. The
expression for the function is

V(S) = max{0, E — S}.

This is because the put option only has any value to you if the stock price S is
lower than the strike price F/, in which case the option is worth the difference,
E — S. Otherwise the option is worthless.

6. The graph is the sum of the graphs for a call and a put, and has equation
V(S) = |S — E|, the absolute value of S — E.



