
February 7, 2005
Lecture 6. Picard Iterates. Pricing of options in the simple model.

The theorem on existence and uniqueness of solutions for differential equations
has an amazing proof, using two concepts we talked about before: recursive
sequences and the contraction fixed point theorem. Here’s the outline of the
proof.
We need to solve the equation f ′ = G(t, f) subject to the initial data f(0) = f0.
The first step is to change the problem into an equivalent one by integration:

f(t) = f0 +
∫ t

0

G(s, f(s)) ds.

Here we have integrated on both sides, and used the initial data. It is a good
idea to run an example parallel to the theory. Take G(t, z) = z, f(0) = 1. The
differential equation in this case is f ′ = f , f(0) = 1, and even before we start
we know the answer must be f(t) = et. The integral equation equivalent to the
IVP is

f(t) = 1 +
∫ t

0

f(s) ds.

The key idea now is to interpret the right hand side of the above equation as a
transformation, changing a function g into something else.

(Tg)(t) = 1 +
∫ t

0

G(s, g(s)) ds.

In our example, if we take g(t) = sin t, then

(Tg)(t) = 1 +
∫ t

0

sin s ds = 1 + (− cos t− cos 0) = − cos t.

What Picard saw was that the solution f we are looking for is a fixed point for
the transformation, that is, f = Tf .
The next thing Picard noticed was that fixed points usually (but not always)
are limits of recursive sequences. He then considered the following recursive
sequence:

f0(t) = f0, f1(t) = (Tf0)(t), f2(t) = (Tf1)(t), fn+1(t) = (Tfn)(t).

In our example, this means

f0(t) = 1, f1(t) = 1+
∫ t

0

ds = 1+ t, f2(t) = 1+
∫ t

0

(1+ s) ds = 1+ t+
t2

2
,

f3(t) = 1+
∫ t

0

(1+ s +
s2

2
) ds = 1 + t +

t2

2
+

t3

6
, f4(t) = 1+ t+

t2

2
+

t3

6
+

t4

24
.

Do you see a pattern? The Picard iterates in this case are the truncations of
the Taylor series for et, and so they converge to et as the iteration is continued.
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Why should the iterates converge? Let’s calculate the difference between two
successive iterates.

fn+1(t)− fn(t) = (Tfn)(t)− (Tfn−1)(t) =
∫ t

0

G(s, fn(s))−G(s, fn−1(s)) ds.

Since by hypothesis G has a derivative in the second variable, we see that if fn

is close to fn−1, then the integrand will be small, and so the whole integral will
also be small. That implies that fn+1 is close to fn, and by induction we obtain
that the sequence fn is indeed converging.
To make the above argument precise we would have to quantify what do we
mean by saying that fn is “close to” fn−1. We will not do that here. The
important idea to grasp here is that certain expressions can be interpreted as
being fixed point problems, and that the solutions to fixed-point problems often
arise as recursive sequences converging. To prove that the recursive sequence is
indeed converging one needs to write down equations, etc.

Financial interlude, Part 1: Put-Call Parity. One of the consequences of
the hypothesis of no-arbitrage is that if two portfolios have the same payoff (in
all possible states of the world) , then they must cost the same. That stands
to reason, for suppose a portfolio θ1 cost p1, and a portfolio θ2 cost p2, and
p2 > p1, but they always pay the same values, no matter what. Then I never
want to buy the second portfolio, since I can get the same returns for a lower
price with the first portfolio. But more than that, there would be an arbitrage
in the market: short (sell) portfolio 2, collect p2 now, and long (buy) portfolio
1 (which costs p1). You make p2 − p1 > 0 now. Since these portfolios make
exactly the same amount, whatever you lose in portfolio 2 will be perfectly offset
by what you will make in portfolio 1, and vice-versa. Thus you can never lose
money in the future, and this would characterize an arbitrage in this market.

One interesting consequence of the above is the put-call parity formula.
Suppose we have a stock whose value S = S(t) changes with time t. We also
have, for that stock, calls and puts, both with strike price E and expiry date T .
The call pays (and therefore, costs) C = C(t), the put P = P (t). We adopt the
following portfolio: Buy the stock, buy a put, and sell the call. The value (for
us) of this portfolio is S + P −C, and this value changes with time, depending
on how the stock performs.

What is our payoff at expiry (T = t)?
The payoff may depend on the value of the stock. If the stock tanked and

S ≤ E, then the stock pays S, the call is worthless (so C = 0), and the put pays
E − S, therefore our portfolio is paying the quantity E. On the other hand, if
S > E, then the stock pays S, the put is worthless (P = 0), and the call will
set us back the quantity S − E. Our portfolio is worth S − (S − E) = E. We
conclude that this portfolio must, in all events, pay off the value E to us at
expiry.

But now consider a portfolio consisting only of bonds, and also paying E at
expiry. Since these portfolios pay the same, they must cost the same. Since the

2



bond must cost Ee−r(T−t), we conclude that

S + C − P = Ee−r(T−t).

This is the Put-Call Parity formula.
Financial interlude, Part 2. In our basic example, let’s now add a new
security V to our market. If the new security V is independent of the security
S we already have in the market, then it is very likely that the number of
future states would have to increase to reflect this independence. (Think of the
earthquake and coin flip examples.) On the other hand, if the new security V
derives its value from that of security S, then there will be no new future states.
In that case we say that V is a financial derivative of S, and S is the underlying
asset.
The price of V will be denoted by V0, and the future states of V will have payoffs
V1 and V2. Since V is a derivative of S, the values V1 and V2 depend directly on
the values of S. What that means is that there’s a function Λ(S) = V , called
the payout function, which gives V its value according to that of S.
Example. Let S be a stock with current value S0 = 100, and future states
valued at S1 = 90, S2 = 110. Let V be a call option with strike price E = 100.
We already saw that the value of a call option at the expiry date depends on
the value of the underlying asset, given by the formula Λ(S) = max{0, S −E}.
Therefore V1 = max{0, 90− 100} = 0, and V2 = max{0, 110− 100} = 10.
Since we did not increase the states of the world, the prices in this market are
completely determined by the payout matrix when applied to the state-price
vector ψ, which we already calculated last class. In symbols,




e−rT

S0

V0


 =




1 1
S1 S2

V1 V2




(
ψ1

ψ2

)
.

But this gives us the price of the derivative: V0 = ψ1V1 + ψ2V2. Substituting
ψ1 and ψ2 we obtain

V0 =
e−rT S2 − S0

S2 − S1
V1 +

S0 − S1e
−rT

S2 − S1
V2.

Back to math. The differential equations we have seen so far are said to be of
order 1, because the first derivative is the highest derivative showing up in the
equation. We can also study equations of order 2, like

f ′′(t) + f(t) = 0 or t2 f ′′(t) + t f ′(t) + f(t) = 0.

These equations are much harder to solve (in general) than equations of order
1, but there are all sorts of special cases that actually happen in practice.

Here are some things to keep in mind for linear equations of order 2:
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• The equation will have two solutions f1(t) and f2(t) that are not a constant
multiple of each other (we call them linearly independent), and every other
solution is of the form Af1(t) + Bf2(t).

• In general it is very hard to figure out even one solution of the differential
equation, but if by any chance you do know one solution, then it is easy
to obtain another one.

• The IVP needs two pieces of data: f(t0) and f ′(t0).

Problems.

1. Solve the differential equation f ′(t) = t f(t) with initial condition f(0) = 1.
2. Obtain the first four Picard iterates for the previous problem. Here G(t, z) =
tz, and I want you to find f0(t), f1(t), f2(t), and f4(t).
3. Obtain the fourth Taylor polynomial for the solution in problem 1, and
compare with your answer in problem 2.
4. Consider the second order equation

t2 f ′′(t) + t f ′(t) + f(t) = 0.

Show that the function f1(t) = cos(ln t) is a solution of this equation, then
guess what another solution f2(t) would be, and show that your guess is correct.
(Note: your guess can’t be a multiple of f1(t)!)
5. Take S0 = 100, S1 = 90, S2 = 110, E = 100, r = 6% per annum, T =
three months. Let V be a call option for the underlying asset S. Then V1 = 0
and V2 = 10. Find V0. You may assume T = 3/12 of a year.
6. In problem 5, if the expiry date increases, should V0 increase, decrease, or
stay the same? (Use the formula to answer this question.) Can this answer be
justified without using the formula? (Purely in economics terms.)
7. In problem 5, if you increase the strike price, what happens to V0? Can you
justify it without using the formula?
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