Problem 13. The table below shows part of a machine-language program for the MARIE computer. Three memory words are shown, beginning at address 100 (hex). If possible, convert each machine-language instruction to an equivalent assembly-language instruction. (If this is not possible, carefully explain why.)

Memory address (hex)	Memory contents (binary)
100	1010000000000000
101	0100000100000100
102	0010000100000101

Opcode	Instructio	n RTN
0000	JnS X	MBR ← PC
im	age011.bn	MAR ← X np (MAR) ← MBR
		$\begin{array}{c} MBR \longleftarrow X \\ AC \longleftarrow 1 \\ AC \longleftarrow AC + MBR \\ PC \longleftarrow AC \end{array}$
0001	Load X	MAR ← X MBR ← M [MAR] AC ← MBR
0010	Store X	MAR ← X, MER ← AC M[MAR] ← MER
0011	X bbA	$ \begin{array}{l} \text{MAR} \longleftarrow X \\ \text{MBR} \longleftarrow \text{M[MAR]} \\ \text{AC} \longleftarrow \text{AC} + \text{MBR} \end{array} $
0100	Subt X	MAR ← X MBR ← M[MAR] AG ← AC - MBR
0101	Input	AC ← InREG
0110	Output	OutREG ← AC
0111	Halt	
1000	Skipcond	If $IR[11-10] = 00$ then If $AC < 0$ then $PC \leftarrow PC +$ Else If $IR[11-10] = 01$ then If $AC = 0$ then $PC \leftarrow PC +$ Else If $IR[11-10] = 10$ then If $AC > 0$ then $PC \leftarrow PC +$
1001	Jump X	PC ← IR[11-0]
1010	Clear	AC ← 0
1011	AddI X	MAR ← X MBR ← M[MAR] MAR ← MBR MBR ← M[MAR] AC ← AC + MBR
100	JumpI X	MAR ← X MBR ← M[MAR] PC ← MBR

TABLE 4.7 MARIE's Full Instruction Set