It's pretty clear. $|\wp(\mathbb{N})| = 2^{\omega}$ through a simple bijection. We know through Cantor Diagonalization that this is strictly larger than ω , thus by definition of ω_1 (as the first cardinal after ω), $\omega_1 \leq 2^{\omega}$. Then I'm not sure why more of an argument would be necessary.

EDIT: To clarify a surjection would just be the identity until $\omega_{1as} \omega_1 \subseteq \kappa = 2^{\omega}$. The rest of the elements can all map to 0.

Alternatively:

Biject \mathbb{N} with $\mathbb{N} \times \mathbb{N}$, Mostowski collapse well-orderings, and for those that are not WO do whatever you please (as long as you hit the finite ordinals).

Alternatively:

 $N == N \times N$ (without choice) so it suffices to find a surjection $f : P(N \times N) \longrightarrow 0$ omega_1.

If A subset N x N is a well-order on N, f(A) is its order type. Otherwise f(A) = 0. (being a well-order is a "formula", so a well-defined notion)

This is a surjection, as omega_1 = the set of all countable ordinals == all order types of well-orders on N