Prove that there exists a surjection from $\mathcal{P}(\mathbb{N})$ onto ω_1 .

The solution may have some aspects in common with the proof of Hartog's theroem.

[we may not use the Axiom of Choice]

Notation and Definitions

Notation: ω_1 denotes the first uncountable ordinal.

 \leq is a well ordering of ω_1 with the property that $seg_{\omega_1}(\alpha)$ is countable for all $\alpha \in \omega_1$

Here is Hartog's Theorem:

[from Notes on Set Theory -Yiannis Moschovakis] [Let me know if you have a question on notation; I have a pdf file of this book]

7.34. Hartogs' Theorem. There is a definite operation $\chi(A)$ which associates with each set A, a well ordered set

$$\chi(A) = (h(A), \leq_{\chi(A)}),$$

such that $h(A) \not\leq_c A$, i.e., there exists no injection $\pi : h(A) \rightarrow A$. Moreover, $\chi(A)$ is \leq_o -minimal with this property, i.e., for every well ordered set W,

if
$$W \not\leq_c A$$
, then $\chi(A) \leq_o W$. (7-27)

PROOF. First set

$$WO(A) =_{df} \{ U \mid U = (Field(U), \leq_U) \text{ is a well ordered set} \\ with Field(U) \subseteq A \}, \quad (7-28)$$

and let \sim_A be the restriction of the definite condition $=_o$ to WO(A),

$$U \sim_A V \iff_{df} U, V \in WO(A) \& U =_o V.$$

Clearly \sim_A is an equivalence relation on WO(A), and we set

$$h(A) =_{\mathrm{df}} \llbracket \mathrm{WO}(A) / \sim_A \rrbracket \subseteq \mathcal{P}(\mathrm{WO}(A)). \tag{7-29}$$

We order the equivalence classes in h(A) by their "representatives",

$$[U/\sim_A] \leq_{\chi(A)} [V/\sim_A] \iff_{\mathrm{df}} U \leq_o V; \tag{7-30}$$

this makes sense because if

$$[U/\sim_A] = [U'/\sim_A], [V/\sim_A] = [V'/\sim_A], \text{ and } U \leq_o V,$$

then $U' =_o U \leq_o V =_o V'$. The fact that $\leq_{\chi(A)}$ is a wellordering of h(A) follows easily from the general properties of \leq_o , **7.31** and **7.33**. Taking the negation of both sides of (7-30) we infer its strict version,

$$V <_o U \iff [V/\sim_A] <_{\chi(A)} [U/\sim_A] \quad (U, V \in WO(A)). \tag{7-31}$$