Prove that there exists a surjection frP(N) ontow;.

The solution may have some aspects in common hétiptoof of Hartog's theroem.
[we may not use the Axiom of Choice]

Notation and Definitions

Notation:« denotes the first uncountable ordinal.

< is a well ordering ofu; with the property thaseg, («) is countable for aky € w;
Here is Hartog’s Theorem:

[from Notes on Set Theory -Yiannis Moschovakis]
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7.34. Hartogs' Theorem. There is a definite operation y(A) which associates
with each set A, a well ordered set

such that h(A) £, A, i.e., there exists no injection m : h(A) — A. Moreover,
x(A) is < -minimal with this property, i.e.. for every well ordered set W,

if W<, A, then y(A) <, W. (7-27)
ProOF. First set
WO(A) =4 {U | U = (Field(U). <) is a well ordered set
with Field(U) C A4}, (7-28)
and let ~ 4 be the restriction of the definite condition =, to WO(A).
UmyV ==y UV e WOA)&U =, V.
Clearly ~ 4 is an equivalence relation on WO( A}, and we set
h(A) =g [WO(A)/~4] € P(WO(A)). (7-29)
We order the equivalence classes in /i(.4) by their “representatives”,
[Uf~al <04y [Vim~a]l ==ar U <, Ve (7-30)
this makes sense because if
[Ufrea] = [U' el (V/a) = [V'[~al. and U <, V.



then U' =, U <, V =, V'. The fact that <_,, is a wellordering of /(A)
follows easily from the general properties of <,. 7.31 and 7.33. Taking the
negation of both sides of (7-30) we infer its strict version.

V<, U = [V/~al <ya) [U/~4] (UV € WO(4)). (7-31)



