3. A particle of mass m moves in one-dimension in the infinite square well (see Eq. 5.2.1. of Shankar). Suppose that at time t=0 its wave function is

$$\psi(x, t = 0) = A[(L/2)^2 - x^2],$$
 (1)

where A is a normalization constant.

- a. Find the probability P_n of obtaining the value E_n of the particle energy, where E_n is one of the energy eigenvalues.
- b. Determine the expectation value $\langle E \rangle$ of the energy. What is the probability that the particle's energy at time t=0 is equal to its expectation value.
- c. What is $\psi(x,t)$?
- 4. Consider $V(x) = -aV_0\delta(x-L) aV_0\delta(x+L)$. Find the bound states energies and their wavefunctions.