\vec{a} , is defined such that

if
$$\langle \vec{x} | \phi \rangle = \phi(\vec{x})$$
, then $\langle \vec{x} | S(\vec{a}) | \phi \rangle = \phi(\vec{x} - \vec{a})$,
so that $\langle \psi | S | \phi \rangle = \int \psi^*(\vec{x}) \phi(\vec{x} - \vec{a}) d\vec{x}$.

- a) Show, using the Taylor expansion of $\phi(\vec{x} \vec{a})$ about \vec{x} , that $S(\vec{a})$ may be expressed in terms of the momentum operator $\vec{p} = -i\hbar\vec{\nabla}$. Sum the expansion to give a simple closed-form expression for $S(\vec{a})$.
- **b)** Show, from the definition of the Hermitian conjugate of S, $\langle \psi | S | \phi \rangle^* = \langle \phi | S^{\dagger} | \psi \rangle$, for all kets $|\phi\rangle$ and $|\psi\rangle$, that S is unitary $(S^{\dagger} = S^{-1})$. Give a simple closed-form expression for $S^{-1}(a)$.
- **c)** Evaluate $[x_i, S(\vec{a})], i = 1, 3.$
- d) Using (c), show how the expectation value $\langle \vec{x} \rangle$ changes under translation.