Documentation for the Project 4 Initial Java Classes

This document provides detailed documentation of the initial classes provided with Project 4. You should go through it studying these classes to prepare you to upgrade them. Be sure you are working with an exact, unmodified copy of each file so that the line numbers will not have been changed. One good option is to place copies in a folder and mark them as read-only. This will prevent unintentional changes. You can view the files with line numbers in jGRASP by clicking on the View menu and checking the Line Numbers check box. You can also toggle line numbers on and off with Ctrl-L.
The following classes are documented:
Person

SalesTeam

SalesAwards

Class Person
The Person class should be quite familiar at this point. The reason for continuing to use it is primarily to emphasize reusability of objects. We have used Person in several programs now. This is a primary goal in designing object classes: To be able to reuse them as many times as possible so that the work that went into developing will be recapitalized to greatest possible extent.
The Person class represents one individual person. It captures the following attributes (data fields) of a person:

First name

Middle initial

Last name

Age Weight

Programs can use Person to represent single individuals or they can create arrays of Person to represent groups of people. They can use as many or as few of the attributes as needed. The fact that an attribute has data in it does not imply any requirement for any particular program to use that data. For example, the weight data might be loaded into the object but a program that does not need that data can simply ignore it. If additional attributes were needed (e.g. social security number, sex, marital status, etc.) they could easily be added. The addition of new, additional attributes will not affect the ability of programs that were written before those attributes were added to use the new, updated object as long as the existing methods are not changed. Such programs would simply not access the new methods.
Instance Variables:
The five instance variables are declared on lines 28 to 32. Note that all are declared private to protect them from direct access by other classes:

firstName: String containing the first name of the person.

middleInitial: String containing the middle initial of the person. There is actually nothing to stop the full middle name being entered although that is not the intent. (Line
lastName: String containing the last name of the person.

age: Integer containing the age of the person.

weight: Double containing he weight of the person.

Constructors:

public Person(): Default constructor (lines 35 to 36). This will leave the instance variables set to the default values: The Strings will be null and the numeric variables will be zero. Since this is declared public it can be used by any class.

public Person(String fName, String mInitial, String lName): Lines 39 to 44. This parameterized constructor takes the three components of the name as parameters and assigns the values passed to the corresponding instance variables. This creates an object with the name components set to values and the numeric variables initialized to zero.

Getters:

String getFullName(): Lines 54 to 57. This calculated getter builds a formatted full name string by concatenating the three components of the name along with the appropriate spaces and punctuation marks. That concatenated string is returned.

String getFirstName(): Lines 61-64.
String getMiddleInitial(): Lines 66-69
String getLastName(): Lines 71-74
int getAge(): Lines 76-79
double getWeight(): Lines 81-84
These are standard, plain vanilla getters that just return a copy of the corresponding instance variable. This is the correct way to access the individual instance variables.

Setters:

public void setFirstName(String newFirstName): Lines 89-92
public void setMiddleInitial(String newMiddleInitial): Lines 94-97
public void setLastName(String newLastName): Lines 99-102
public void setWeight(double newWeight): Lines 112-115
These are standard, plain vanilla setters that copy the data value passed in through the parameter into the corresponding instance variable.

public void setAge(int newAge): Lines 104-110.This setter performs a sanity check on the value passed in through the parameter. If the value is less than zero or greater than 110 it is assumed to be invalid and the age instance variable is set to the special flag value of -1. Since -1 cannot be a valid age any program can detect the presence of an invalid age by checking the return from getAge() for this value. If the parameter value is within the acceptable range the instance variable is set to it.

Class SalesTeam
The SalesTeam class represents one team of sales persons made up of a group of people. It serves the purpose of grouping these people into the team, recording their personal information and their yearly sales totals, and it maintains the team name and information about which years of sales data are available. This class uses Person objects to represent individual sales people.

Instance Variables:

The following instance variables are maintained in each object of this class. They are declared on lines 19 to 23:

teamName: This string contains the name of the team.
Member[]: The member[] array is an array of Person objects. This is how Person objects are grouped into the team. When the SalesTeam object is created the team size is specified. That is used to create an array of the correct size. No capability is provided to increase the team size once the object is created so it would be necessary to create a new object with an increased size if this needed to be done. The member variable plays a special role in that if it is null the object is considered to be marked as invalid. Since the only constructor in SalesTeam is a parameterized constructor that creates the array the only way for member to be null is if something went wrong and it was intentionally set to null to mark that fact.
sales[][]: The sales[][] array is a two dimensional array that stores all of the yearly sales data for all of the team members. The first index specifies the team member and is in parallel to the member[] index. That is, sales[0][] has the sales data for the team member in member[0], sales[1][] the data for member[1], etc. The second index specifies the year. The first year is specified by the baseYear instance variable. The minimum allowed value for baseYear is 2005 which is when the company was created. The data at sales[][0] refers to data for baseYear, sales[][1] to data for baseYear+1, sales[][2] to data for baseYear+2, etc. So, applying both indexes, the data at sales[1][2] would be the yearly sales for the member at member[1] for baseYear+2. If baseYear were set to 2005 this would be data for 2007. The sales[][] array is created when the object is constructed using the team size and the year count which are passed as parameters to the constructor.
baseYear: This integer specifies the actual year of the data for the zero second index of sales[][]. The minimum allowed value is 2005 because this is when the company was created so there cannot be data prior to that year. The baseYear is set by the constructor as the value is passed to it as a parameter.

yearCount: This integer gives the number of years for which there is sales data in the sales[][] array. It is equal to the second dimension of salea[][] so the valid rage of index vales for the second index of sales[][] is from 0 to yearCount-1.

Constructors:
public SalesTeam(String teamName, int teamSize, int initBaseYear, int yearCount): Lines 38-51. This is the only constructor in SalesTeam. It receives the following four parameters:
teamName: This string contains the name to be assigned to the team. Since the parameter name and the instance variable name are the same the this.teamName syntax is used in the assignment on line 46 to refer to the instance variable. This was done to illustrate how to deal correctly with parameter names that are the same as instance variable names. This is not a bad practice but you have to be careful if you use it because it is too easy to forget to use “this” notation when accessing the instance variable.
teamSize: The int teamSize variable stores the number of members on the team. The value of teamSize is equal to member.length and is used when creating the member[] array. The value is checked for less than 1 (line 40) and if so member is set to null (line 42) to mark the object as invalid and no array is created.
initBaseYear: This int is the numerical value of the first year of data stored in the sales[][] array and is used to set the value of baseYear. Line 40 checks if this value is less than 1. If so the object is marked as invalid and the constructor returns without doing anything else. To get the numeric year that corresponds to any second index of sales[][] just add the index value to baseYear.
yearCount: This int is the number of years of sales data in sales[][]. Line 40 checks if this value is less than 1. If so the object is marked as invalid and the constructor returns without doing anything else. This is also an example of the use of “this” notation (line 50).
If teamSize, initBaseYear, or yearCount fail the validation checks in line 40 member is set to null and the constructor returns, This marks the object as invalid. The code that called the constructor should check for a valid object by calling isValid().

If the parameters pass the validation the team name is set on line 46, the member[] array is created on line 47 with size determined by teamSize, the baseYear is set on line 48, the sales[][] array is created on line 49 with row count determined by teamSize and column count determined by yearCount, and yearCount is set on line 50. At this point the object is fully constructed although no data has yet been loaded into it as the arrays are empty.
Getters:
public Person getTeamMember(int index): Lines 60-66. Returns a reference to the team member Person object that is at index value ‘index’ in the member[] array. Returns null if the SalesTeam object is invalid (member is null) or if ‘index’ is an invalid index for member[]. Note that this will also return null if no Person object has yet been assigned to the corresponding index location even though the index value itself is OK. This method permits access to the Person objects assigned to the team. Since direct references to these objects are returned, if the calling code modifies the Person object it is modified for the SalesTeam also. This method can also be used to iterate through all the people on the team in order to perform a search by iterating the index from 0 to the team size minus 1.
public double getSales(int personIndex, int year): Lines 75-90. This method is used to obtain the total sales for a specified year for a specified sales person. The sales person is specified by giving the index to the member[] array. The year is specified by giving the numeric year (2005, 2006, etc.) The method takes care of converting the year to the correct second index for the sales[][] array. If the object is not valid zero is returned (line 79). The correct year index for sales[][] is calculated by subtracting the baseYear from year (line 81). The validity of personIndex is tested by calling getTeamMember() (line 84). If not valid, either because it is out of range or because that member[] element is null, zero is returned. The validity of the calculated yearIndex is tested on line 87. If it is out of range zero is returned. This has the effect that a request for sales data for a year that has not been loaded into the object will be reported as zero. Finally, if all inputs are valid, the sales amount is returned on line 90.
public double getBonus(int personIndex, int year): Lines 102-105. This method simply returns 5% of the sales for the specified person for the specified year. It does not need to do any validity checking because it gets the amount of sales by calling getSales() which does all the necessary checks. In any case of an invalid object or invalid input an appropriate bonus value of zero will be returned. This illustrates using the code already written in another method to simplify this one.

public int getTeamSize(): Lines 113-119. This getter checks for an invalidated object and returns zero if so. Otherwise the team size is returned as derived from the length of the member[] array.
public int getBaseYear(): Lines 127-130. This is a standard, plain vanilla getter that returns the value of baseYear.
public int getYearCount(): Lines 138-141. This is a standard, plain vanilla getter that returns the value of yearCount.

public boolean isValid(): Lines 149-152. As is commonly done with boolean getters this is named using the isXXX convention rather than the getXXX convention. This helps make the code read more understandably. This is especially true when the method is called inside an if-statement or loop statement control condition. This method returns true if member[] is not null or false if it is. The reference in member will have been set to null if some condition made it impossible to construct a valid object. It uses the technique of calculating the return value right in the return statement. This makes the code very compact.
public String getTeamName(): Lines 160-163. This is a standard, plain vanilla getter that returns the value of teamName.

Setters:
public void setTeamMember(int personIndex, Person newMember): Lines 180-184. This method attempts to set the Person object at location member[personIndex] to the Person newMember. It will return without taking any action if the SalesTeam object is invalid (member == null) or the index personIndex is invalid for member[]. No limitation is placed on over-writing an existing Person so this can be used to replace one person with another. It could be used to place the team members in some desired order within member[], for example.
public void setSales(int personIndex, int year, double salesAmount): Lines 195-201. This method attempts to set the yearly sales amount for a specified team member in a specified year to a given amount. The person is specified by giving the index of that person in member[] which will also be the first index in sales[][]. The getTeamMember() method is called to determine validity of the personIndex (line197). This check incorporates the check for invalid object so that does not have to be done separately. If personIndex is not valid or the object is not valid getTeamMember() will return null. Then the year is checked for validity. If an invalid input is detected the method returns without taking any action. If the inputs are valid the element of sales[][] selected by personIndex and year-beaseYear which will be the correct year index is set to the value passed as salesAmount.
public void setTeamName(String teamName): Lines 209-212. This is a standard, plain vanilla setter that sets the value of teamName. It uses “this” syntax to resolve the duplication of the parameter name and the instance variable name.

Class SalesAwards
The SalesAwards class is a main class that functions as a program that collects data about multiple sales teams and sales persons and determines which team wins the team award and which person wins the individual sales person award. It use an array of SalesTeam objects to maintain this information. It uses Person objects directly also and indirectly through their storage and manipulation in the SalesTeam objects.

This program accomplishes its requirements but it is labor intensive to use. A large amount of data has to be entered every time it is run. A data entry error near the end of this process could cause the program to abort forcing re-entry of all the data. The data that it captures is not saved in a form that would allow it to be read back into the program later.

Class Methods:

The following class methods are implemented:
public static void main(String[] args) throws IOException
public static void loadAllData(SalesTeam[] teams, Scanner kbd)
public static void loadTeamData(SalesTeam teamToLoad, Scanner kbd)
public static Person createSalesPerson(Scanner kbd)

public static void main(String[] args) throws IOException (Lines 25-93)

The main() method consists of three sections:

1. Data input: lines 46-49.

2. Data analysis: lines 52-85.

3. Reporting: lines 88-91.
Data Input:

The main() method offloads almost all of the input responsibility to the other methods but it plays the key role of calling loadAllData() on line 49. This is what triggers the rest of the input process to occur. When loadAllData returns the teams[] array is fully loaded with team, member, and sales data from the keyboard.

This section gets the sales team count from the user (line 46-47) and creates the teams[] array (line 48) using that value as the array size. Once that is done the only thing it has to do is call loadAllData() which does the rest of the input work. Two arguments are supplied to the loadAllData() call: a reference to the teams[] array and a reference to the Scanner object.
By passing the teams[] reference main() is giving loadAllData() access to the array that it just created. This allows loadAllData() to fill that array with the data it collects. Although loadAllData() is a void method the data is able to be passed back to main() inside the updated array so no return value is needed.
By passing the reference to the Scanner kbd main() is giving loadAllData() access to the Scanner object that it created. This will allow loadAllData() and the methods it calls to all make use of a single Scanner object. Although it would be possible for each method to create its own Scanner this would be more cumbersome and can sometimes have strange side effects due to possible interference of one Scanner with another when several are connected to the same data source. You will find the full discussion of loadAllData() and the other methods further down in this document.
When the input section completes we have a teams[] array full of data to be analyzed.

Data Analysis:

The data analysis section has the responsibility of scanning through all of the data that was loaded into the teams[] array and determine which team had the highest sales for the years that were entered and which individual sales person had the highest sales. This is where main() does most of its work. It will do this by iterating (looping) through first the teams in the teams[] array, then through each individual member of the tem, and finally through each year worth of data for that member. By coordinating these loops correctly and by placing summing variables at the right locations in the loops it will gather the total sales data for each member and each team. At the appropriate points it will test to see it has found a new max total for either a team or an individual and if so update the maximum tracking variable and capture the team or individual identity. We will look in more detail at how this is done.
We begin by setting up our variables to do the tracking of the sales amounts and identities of the winners. Lines 52-55 initialize these variables. Variable winningTeam is a reference to a SalesTeam object. The code will set it equal to the SalesTeam just processed when it detects that this team’s total is greater than the largest total seen thus far. That is how we capture the identity of the winning team. We set this to null initially to indicate that no potential winner has yet been processed. Variable winningTeamAmt is a double that will be set to the amount of the team just processed when ever that team’s total is greater than that of the current potential winner. That is how we detect the amount of the winning team. This is set to zero to begin with so that the first team’s total will trigger the capture of the first team as a potential winner. Unless the first team had zero sales which we assume will never be the case! The equivalent things are done setting up for the winning individual: winningSalesPerson is a reference to a Person object which will be set to the person with the maximum individual sales and winningSalesPersonAmt will track that maximum amount.
Now we are ready to enter the loops. All of these will be for-loops because we always know before entering the loop how many iterations will be needed: We know how many teams there are, how many people are on each team, and how many years worth of data there is to be processed.

The outer-most loop spans from lines 58-85. Its job is to make one iteration for each team in the teams[] array. During each single iteration of this loop we will process all of the data for that one team. Inside the loop we will execute the other two loops to examine the people and the years of data. The control variable for this loop is tInx (team index). We will iterate this variable from 0 to salesTeamCount-1 because that is the range of valid index values for the teams[] array. This ensures that we will “visit” every team by the time we are done.
Inside the team loop the first thing we do is set teamTotal to zero on line 60. We want to do this at this point because we are just beginning the examination of a team. We set the total to zero now and then add each sales amount belonging to this team as we encounter it. That way by the end of the iteration this variable will contain the total sales for the team and we can do the test to see if this a potential winner. With the initialization to zero done we are ready to enter the team member loop and examine each member of this team.
The team member loop spans from lines 62-77. Each iteration of this loop will examine one of the members of the team selected by the current value of tInx. The control variable for this loop is spInx (sales person index). We will iterate its value from 0 up to the number of members on the team selected by tInx. But how will we know how many members that is? We will have the SalesTeam object tell us. Notice that on line 62 we control the team member loop as follows:
for(spInx = 0; spInx < teams[tInx].getTeamSize(); ++spInx)

The index spInx is counted up from 0 until it is equal to teams[tInx].getTeamSize() at which point the loop terminates. Lets examine this expression. The teams[tInx] part is using the tInx index controlled by the team loop to select the SalesTeam object in the teams[] array to which tInx refers. This is the “current” team. That is how we will make the inner loops work with the team that the outer loop is positioned on. The expression teams[tInx] is a reference to one SalesTeam object because the teams[] array is an array (collection) of multiple SalesTeam objects. When we apply the tInx index to it we obtain a reference to just one of those multiple objects: The one that tInx specifies. So, teams[tInx] is a reference to one SalesTeam object and we can use all of the instance methods with it that are defined in the SalesTeam class. The getTeamSize() method fetches the number of members on the selected team from the data stored inside this object. That means that the expression teams[tInx].getTeamSize() will get us the number of members on the team currently selected by tInx. And that is exactly what we need! By making the selected SalesTeam object tell us its member count we can easily iterate our spInx index through the right sequence to access each of those team members individually.
At the beginning of each team member loop iteration we need to set the total sales for the selected team member to zero similar to what we did for the team. On line 65 this is done. We are now ready to enter the sales year loop which will iterate through the years of sales data for the selected person (spInx) on the selected team (tInx).
The sales year loop spans from lines 66-69. The control for this loop is as follows:

for(yr = teams[tInx].getBaseYear(); yr <= teams[tInx].getBaseYear() +

teams[tInx].getYearCount()-1; ++yr)

Similar to what we did to control the team member loop we are going to make the selected team (teams[tInx]) tell us what we need to know about which years of data are available so we can iterate the yr sales year value from the base year up to the last year for which there is data. Notice that yr is not an index to an array. It is the actual numerical year: 2005, 2006, etc. We need this because the SalesTeam.getSales() method requires that we specify the numerical year. Here is how this for loop works:
The yr year variable is initialized to teams[tInx].getBaseYear(). That means that when we enter the first iteration of the loop it is equal to the base year for the selected team. For each additional iteration we increment it (++yr) and then compare it to teams[tInx].getBaseYear() +

teams[tInx].getYearCount()-1. This last expression calculates the base year plus the year count minus 1. That will be the last year for which there is data. For example if the base year is 2005 and the year count is 3 then the last year for which there is data is: 2005 + 3 – 1 = 2007. That will cause yr to iterate through the three year values 2005, 2006, and 2007 which is exactly what is needed.
Inside the sales year loop there is just one statement on line 68. It fetches the sales amount for the year selected by yr for the team member selected by spInx in the team selected by tInx and adds it to the total sales for this team member as follows:

personTotal += teams[tInx].getSales(spInx, yr);

Notice that the calculation above is using the control variables from all three loops: tInx, spInx, and yr. This is how we finally drill down to the maximum level of detail selecting the team, the team member, and the year in order to get the corresponding sales data. Each loop controls one of these values. Because the loops are nested inside each other the inner most loop has access to all three of these values. This can only be accomplished with nested loops.
Now we reach the point in the code where the loops are terminating and we will see what happens as each one finishes its set of iterations.

The if-statement spanning lines 71-75 will be executed immediately after the sales year loop finishes a set of iterations. It performs the detection of the maximum sales person total that will identify the winning sales person. When the sales year loop finishes its iterations for one sales person, personTotal contains the total sales for all of the years for the team member selected by spInx. This total is compared to winningSalesPersonAmt. If it is greater than the current winning amount the if-controlled block is executed. In the if-controlled block winningSalesPerson is set to refer to the team member selected by spInx by calling teams[tInx].getTeamMember(spInx). Then the winningSalesPersonAmt is set to this team member’s personTotal. If this turns out to be the maximum for all sales people these values will not get updated again and this person will be the winner. But, if some other sales person sold more then on a future iteration the new value of personTotal will be greater than this one and a new update will designate a different person as the winner. By the time that all three loops finish these two data elements will have data for the sales person who sold the most.
Note that on the first execution of this test the current sales person will always be selected as a potential winner (except for the strange situation that the person has zero sales) because winningSalesPersonAmt was initialized to zero prior to entering the loops. That is the reason for initializing it to zero.

Following this if-statement we add this sales person’s total to the team total on line 76. The team total will be the total of all team members. We are still on the same iteration of the outer loop so the selected team is still the same one selected by tInx. This addition of team member totals will occur for each team member in the team selected by tInx because the value of tInx will not update to the next value until a new team loop iteration begins.
The team member loop ends on line 77. When the last member of the current team has been processed (the team member loop has finished a set of iterations) the first line following line 77 will execute. This is the comparison of teamTotal to winningTeamAmt on line 80. At this point teamTotal will contain the total sales for the team selected by tInx. The detection of the winning team works just like the detection of the winning sales person except it uses the team totals and the SalesTeam reference to identify the team.
Finally on line 85 the team loop ends. Either a new iteration of the team loop will begin and the entire process is repeated or the team loop will terminate because all teams have been processed. When the team loop terminates the analysis section is complete and processing moves on the reporting section will execute. The important results of the analysis section are the team and sales person winner variables which at this point will contain correct data for the individual sales person who sold the most and the team that sold the most.

Reporting:

The reporting section begins on line 88. All it has to do is display the results. Because winningTeam now contains a reference to the SalesTeam object for the team that sold the most we can report the name of the winning team by calling winningTeam.getTeamName() (line 88). We can report the amount of sales for the winning team by displaying the value of winningTeamAmt (line 89). A call to winningSalesPerson.getFullname() will report the name of the person who sold the most (line 90). And finally we report the sales amount for the winning person by displaying winningSalesPersonAmt.

public static void loadAllData(SalesTeam[] teams, Scanner kbd)

The loadAlldata() method is responsible for loading all of the data to be processed into the SalesTeam array teams[]. Here the same variable name has been used in both the calling code in main() and in loadAlldata() but understand that teams[] in main() and teams[] in loadAllData() are two different variables even though they will be loaded with a reference to the same array in this program. The Scanner reference kbd is also named the same and also refers to the same Scanner object but understand that this is not necessary.
The loadAllData() method makes use of loadTeamData() which makes use of createSalesPerson() so the work of getting all of the data loaded has been distributed between the three methods with each one focusing on its piece of the job.

The loadAllData() method spans from lines 105-138. It is divided into the following sections:

1. Getting the start and end years from the user.

2. Looping through the number of teams to be created creating on each iteration.

Getting the start and end years:

There is not a lot to this. This is done in lines 114-118 after the local variables are declared. The user is prompted to enter the start year and end year. These values are saved in the local variables startingYear and endYear. Notice that a nextLine() call is used on line 118 to flush out the end of line (EOL) marker after the preceding netxInt() call. This is necessary because the next data to be read will read with a nextLine() call. If the EOL marker is left in the input stream the first nextLine() call will read it instead of the next line in the file which is what we want it to do.
Looping through the creation of the teams:

The for-loop that drives the creation of the teams and the input of the data required for them spans from lines 123-137. It uses a generic index integer variable i to index the teams as they are created and to place them into the teams[] array. The for-loop that drives this process initializes i to 0 and increments it up to teams.length-1. When it actually reaches teams.length the loop terminates so the values of i actually used in the iterations range from 0 to teams.length-1 which is the range of valid index values for the teams[] array.
In order to create a new SalesTeam object using its only constructor we need to have the team name, the number of team members, the start year of the sales data, and the number of years of data to be loaded. We already have enough information for the last two items but we need to get the first two from the user. Lines 125-129 take care of this. Again we flush out the EOL marker.
Line 130 creates the new SalesTeam object by calling the constructor with the initializing data required and assigning the resulting object reference to its place in the teams[] array as selected by the value of i. The if-statement from lines 131-135 checks if the object created is valid. If bad data was supplied to the constructor it will have marked the object as invalid. In the program we just display an error message and abort.

This gives us a new SalesTeam object but it does not have any team members assigned to it or any sales data for them loaded into it. This part of the job is taken care of by the call to loadTeamData(). A reference to the SalesTeam object is passed to loadTeamData() so that it can fill this object with data. When the method returns the object has been loaded with data for as many team members as were specified for it and with sales data for all of them for the years specified.
At this point the team creation loop is finished. It will loop back to create the next object and when all of the objects have been created it will exit. On exit the end of the loadAllData() method is reached and the method will return,

public static void loadTeamData(SalesTeam teamToLoad, Scanner kbd)

The loadTeamData() method is responsible for loading all of the team member specific data into one SalesTeam object. This includes both the personal data and the sales amounts. The method receives a reference to the SalesTeam object that it needs to load (teamToLoad) and a reference to the Scanner object from which it will get data from the user (kbd). This method spans lines 147-168.
In order to accomplish this a for-loop is used to iterate through all of the team members that are supposed to be created. This loop spans from lines 154-167. The control variable used is pInx (person index). It is initialized to 0 and incremented up to teamToLoad.getTeamSize(). This will produce a range of 0 to teamToLoad.getTeamSize()-1 as the index values actually used in the loop iterations which will be the correct sequence of values to apply to the SalesTeam object to reference all of the team members.

The actual creation of the Person object for each team member and assignment into the SalesTeam object is accomplished on line 158. A call is made to createSalesPerson() to create the Person object and fill in the name data. The Person reference returned from createSalesPerson() is used directly as the second argument to a call to setTeamMember(). The first argument is pInx which selects which team member to set. Together these two method calls accomplish the creation of the new Person object, the loading of that object with name information, and the assignment of the new Person as a team member in the SalesTeam object referenced by teamToLoad.
Now that the team member has been created and assigned we need to get the sales data for that person. Line 160 gets the base year from the teamToLoad object in preparation for entering the loop of lines 161-165 which will get and load the sales data from the base year up to the last year for which data is supposed to be loaded. The endYear variable is initialized to the numeric value of the last year to be loaded. The we just stay in the loop until year has been incremented to equal endYear.
Inside the loop body we prompt for the sales data for a particular year, get that input, and use setSales() to assign that sales amount to the team member specified by pInx in the year specified by year.

After the loop exits we flush the EOL marker leaving the input Scanner ready for the nextLine() entry of the next team name, which is the next input that will needed from the Scanner.

When loadTeamData() returns the SalesTeam object referenced by teamToLoad has been filled with team member and sales data.

Public static Person createSalesPerson(Scanner kbd)

The createSalesPerson() method (lines 179-189) has the responsibility of creating the new Person objects which will be used as team members, fetching the name data from the user, and loading this data into the new Person object. A reference to the Scanner object to use for input is passed as the only parameter. A reference to the newly created Person object is returned.
On line 181 the new Person is created using the default constructor. The default constructor is used because we do not intend to load all of the data that the parameterized constructor requires. We will only load the name data because that is all that this particular program is interested in.

Lines 182-187 prompt for the three name components and load the inputs directly into the object using the setters. Notice that the technique of calling nextLine() directly in the call to the setter is used.

Line 188 returns a reference to this newly created object to the caller.

