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50 Planar Graphs

In this section, we study graph drawings. We are especially interested in graphs that can be
drawn without crossing edges.

Dangerous curves

A graph and its drawing are very different objects. A graph i1s, by Definition 44.1. a pair of
finite sets (V. £} that satisfy certain properties. Its drawing is ink on paper; it is notational
shorthand that is often easier to grasp than writing out the two sets V and £ in full.

In this section. we take a different approach. We not only study graphs. but we study their
drawings as well. A drawing is ink on paper—it is not 4 mathematical object. (A picture of
a circle is not a circle.y Thus our first order of business ought to be a careful mathematical
definition ot a graph drawing. Unfortunately. this is rather complicated. The difficulty lies
primarily in defining just what we mean by a curve in the plane. The precise definition of
curve requires concepts from continuous mathematics that we have not developed and are
beyond the scope of this book.

Instead. we shall just live dangerously. We proceed with our intuitive understanding of
what a curve 1s. Note that a curve may have corners and straight sections. Indeed. a Iine
segment is a curve. It must, however, be all in one piece. The figure in the margin shows
three separate curves. A simple curve is a curve that joins two distinct points in the plane and
does not cross itself. The top curve in the figure is simple: the other two are not.

[f a curve returns to its starting point, we call the curve closed. If the first/last point of the
curve is the only point on the curve that is repeated. then we call the curve a simple closed
curve. The middle curve in the diagram is a simple closed curve. The third curve is neither
simple nor closed.

Before we get to work on planar graphs, we need to present a word of warning. Some
of the proofs in this section are not rigorous. We shall be honest with you concerning where
we are not using full rigor. The problem is that fully proving these results requires a deep
understanding of curves and we have not even given a proper definition of curve. For example.
we use (implicitly) the following theorem.

Thecrem 50.1 (Jordan Curve)
A simple closed curve in the plane divides the plane into two regions: the inside of the curve

and the outside of the curve.

Many students’ reaction to the Jordan Curve Theorem is that it is so obvious that it does
not require a proof. Ironically. this “simple’ and “obvious™ statement is difficult to prove. We
shall accept 1t and use it nevertheless.

Embedding

A drawing 1s a diagram made of ink on paper. The mathematical abstraction of a drawing is
called an embedding. An embedding of a graph is a collection of points and curves in a plane
that satisties the following conditions:

e Each vertex of the graph is assigned a point in the plane: distinct vertices receive dis-
tinct points (i.e.. no two vertices share the same point).

e Each edge of the graph is assigned a curve in the plane. If the edge is ¢ = xv. then the
endpoints of the curve for e are exactly the points assigned to x and y. Furthermore, no
other vertex point is on this curve.

This tigure is from a CD-rom of clipart. A
new version 1s needed for the final book.
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It all the curves are simple (do not cross themselves) and if the curves from two edges do not
intersect (except at an endpoint if they both are incident with the same vertex), then we call
the embedding crossing-free.

The figure shows two embeddings of the graph K. Note that we greatly exaggerated the
points. drawing them as large round dots. The drawing on the right represents a crossing-tree
embedding on Kj.

Not all graphs have crossing-free embeddings in the plane. Those that do have a special
name.

Definition 50.2 (Planar graph)

A planar graph is a graph that has a crossing-free embedding in the plane.

For example. the graph K is planar. However, the graph Ks is not planar. How do we
know? We can try to find a crossing-free drawing ot K5 and not succeed, but that is not much
of u proof. Alternatively, we study properties of planar graphs and use that knowledge to
prove that Ks 1s not planar. The first step toward this goal is a classic result due to Euler.

Euler’s formula

Let G be a planar graph and consider a crossing-free embedding of G, as in the figure. In this
drawing. we see the points and curves of the embedding. We also see another feature: faces.
A face is a portion of the plane cut off by the drawing. Imagine the graph drawn on a physical
piece of paper. If we cut along the curves representing the edges of G. the paper falls apart
into various pieces. Each of these pieces is called a face (or region) of the embedding.

The drawing of the graph in the figure has five faces. Yes. five is the correct number. There
are four bounded taces (faces with only finite area) and one unbounded face that surrounds
the graph.

The graph in this figure has 1 = 9 vertices, m = 12 edges. and f = 5 faces. | encourage
you to make a number of other crossing-free drawings of connected planar graphs and, for
each. record how many vertices, edges. and faces each drawing has. Stare at your numbers
and see if you discover the following result (don’t peek).

Theorem 50.3 (Euler's formula)
Let G be a connected planar graph with n vertices and m edges. Choose a crossing-free
embedding for G, and let [ be the number of faces in the embedding. Then

n—nt f =2

Please note that the hypothesis connected is important. An extension to this result covers
‘he cases when the graph is not connected (see Exercise 50.3).

Proof. This proof is by induction on the number of edges in the planar graph G.
Suppose G has n vertices. The basis case for this proof is when the number of edges is
1 — 1 since a connected graph with n vertices must have at least n — 1 edges (see Section 47).
Basis case: Since G is connected and has nt = n — 1 edges, we know that G is atree. In a
Irawing of a tree. there is only one face (the unbounded face) as there are no cycles to enclose
dditional faces. Thus f = 1. We therefore have

H—m+f=n—m—-1)=-1=2

s required.
Induction hypothesis: Suppose all connected planar graphs with n vertices and m edges
atisfy Euler’s formula.
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This definition of face 1s not rigorous.

This proof is not 100% rigorous. There
are no untrue statements, but some of
our claims are unsupported. In
particular, when we delete a non-cut
edge from the graph. we assert. but do
not prove, that two faces collapse 1nto a
single face.
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Let G be a planar graph with n vertices and m + ! edges. Choose a crossing-free em-
bedding of G and let f be the number of faces in this embedding. We need to prove that
n—{m—1)+ f=2.

Let e be an edge of G that is not a cut edge. Because G has more than n — | edges, it is
not a tree. and therefore (Theorem 47.5) not all of its edges are cut edges. Therefore G — ¢ is
connected.

If we erase e from the drawing of G. we have a crossing-tree embedding of G — ¢, and so
G — e 1s planar. Notice that G — ¢ has n vertices and {(m+ 1) — 1 = m edges. The drawing, we
claim. has f — 1 faces. The edge we deleted causes the two faces on either side of it to merge
into a single face, so G — e’s drawing has one less face that G's.

Now. by induction. we have

i

2

n—m-={(f—1)

which rearranges to
2

n—{m-=1+f

which is what we needed to prove. ©

Let G be a connected planar graph with n vertices and m edges. We can solve the equation
n—m+ f=2for fand we get f =2 —n-m. This has an important consequence. The number
of vertices and edges are quantities that depend only on the graph G—they have nothing to do
with how the graph is drawn in the plane. On the other hand. the quantity f is the number of
faces 1n a particular crossing-free drawing of G. There may be many different ways to draw
G without crossings. The implication of Euler’s formula is that regardless of how we draw
the graph. the number of faces is always the same.

For example. consider the two drawings of the graph in the figure. In both cases, the
graphhas f =2 —n+m=2-9+12 =15 faces.

Notice that we wrote a number inside each face. This indicates the number of edges that
are on the boundary of that face: it is called the degree of the face. In the upper figure, the
face with degree equal to 7 is noteworthy. Observe there are only six edges that touch that
face. Why, then, do we say this face is degree 77 The edge to the leaf has both sides on the
boundary of the face; therefore this edge counts twice when we calculate the degree. The
concept of side of an edge has no meaning whatsoever when we are only considering graphs.
However, it makes sense when we consider a graph's embedding.

Since every edge has two sides, it contributes a total value ot 2 to the degrees of the faces
it touches. If an edge only touches one face, then it counts twice toward that face’s degree. If
it touches two faces, it counts once toward each of the two faces” degrees. Therefore, if we
add the degrees of all the faces in the embedding. we get twice the number of edges in the
graph. We have shown the following.

Proposition 50.4

Let G be a planar graph. The sum of the degrees of the faces in a crossing-free embedding of

G in the plane equals 2, E(G) .

How small can the degree of a face be? If the graph is simply K. then the embedding 1s
just one point, and there is just one face (the entire plane minus the one point). This face is
bounded by zero edges. so it has degree equal to 0.

If the graph has just one edge. then as before. there is only one face. The “boundary™ of
this face is just the one edge—it counts twice to the degree. and so this face has degree 2.

As soon as a planar graph has two (or more) edges. then all faces have degree 3 or larger.
(Technically, we should prove this. but we are taking a less than rigorous approach to planar
graphs just for this section. Draw pictures to convince yourself of this fact.)

We use the face-degree concept to prove the following corollary to Euler’s formula.
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Corollary 50.5

Let G be a planar graph with at least two edges. Then

E(GY <3V(G) ~6.

Furthermore, if G does not contain Ky as a subgraph. then

E(G)

IA

2V(G) -4
Proof. First note that, without loss of generality, G is connected. If G is not connected. we
can add single edges between components to make it connected. and the resulting graph 1s
still planar with more edges than the original graph. If the larger graph satisfies the inequality
IE(G), <3|V{G)|— 6. so does the original graph.

Let G be a connected planar graph with at least two edges. Pick a crossing-free embedding
of G this embedding has f faces. By Euler’s formula, f =2 — {V(G)| - |E(G)".

We calculate the sum of the degrees of the faces in this embedding.

On the one hand. by Proposition 50.4, the sum of the face degrees is 2|E(G)/|.

On the other hand. every face has degree at least 3. so the sum of the face degrees is at
least 3 f. Therefore we have

2E(G)| =z 3f

which we can rearrange to read f < %[E(G)f.

Substituting this into Euler’s formula. we get

2 V(G| + E(G)| = f < Z|E(G)!

[USH N o]

which rearranges to 2 — |V(G)| + %\’E(G)l < 0 which yields
E(G)] < 3V(G)| —6.
The proof of the second inequality is left for you (see Exercise 50.4). T
Here is another consequence of Euler's formula.

Coroliary 50.6

Let G be a planar graph with mininpuon degree S, Then & < 5.

Proof. Let G be a planar graph. If G has fewer than two edges. clearly < 5. So we may
assume that G has at least two edges.

Thus. by Corollary 50.5. we have [E(G)| < 3|V(G)| - 6.

The minimum degree § cannot be greater than the average degree. Let d denote the
average degree in G. So 8 < d.

We now calculate.

<d=

[@7]

Sevig ) 2E(G) _ 26V(G)-6) ER
(

.
VG WG S VG VIG)

but since J is an integer. we have 8 < 5. &

Nonplanar graphs

A graph that is not planar 1s called nonplanar. We can use Corollary 50.5 to prove that certain
graphs are nonplanar.
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Proposition 50.7
The graph Ks is nonplanar.
Proof. Suppose. for the sake of contradiction. that K5 were planar. By Corollary 50.5. we
would have
10 = E(G) <3V(G)]—6=3x5-06=09.

a contradiction.= <= Therefore K5 is nonplanar. ©
Corollary 30.5 is not an if-and-only-if

Consider the graph in the figure: Is it planar? Note that it has seven vertices and twelve  result. The graph in the figure satisfies
edges. Does it satisfy the formula [E(G)| < 3{V(G)! — 67 Yes: Note that 12 < 15 =3 x 7 - 6. the incquality [E < 31V — 6. butis not

We claim the graph in the figure is nonplanar. Suppose it were planar. Then it would planar.
have a crossing-free embedding. Given such an embedding. we can ignore the two vertices
of degree 2. The path between the lower left and lower right vertices is represented by a
three-section curve that we can think of as a single curve. Thus. if the graph in the figure has
a crossing-tree planar embedding. so does Ks. However, since Ks has no such embedding,
neither does the graph in the figure.

The graph in the figure is an example of a subdivision of Ks. A subdivision of G is formed
from G by replacing edges with paths. Clearly if a graph is planar. so are its subdivisions. And
the converse of this statement is also true: If a graph is nonplanar, then all of its subdivisions
are also nonplanar. Therefore any subdivision of K5 1s nonplanar.

Moreover. any graph that contains a subdivision of Ks as a subgraph must also be nonpla-
nar.

Next let us consider the complete bipartite graph K3 3. It has six vertices and nine edges,
and so it satisfies the inequality 9 = |[E(G)| <3|V(G)I—6—-3x6—6=12. However. because
K3 3 1s bipartite, it contains no odd cycles. In particular. it does not contain K3 as a subgraph.
We can therefore consider the stronger inequality E(G)| < 2|V(G)| -4 in Corollary 50.5.

Proposition 50.8

The graph K5 5 is nonplanar.

Proof. Suppose. for the sake of contradiction, that K3 3 were planar. Since it does not contain
K3 as a subgraph. we have

9=|E(G)| <2IV(G)|-4=2x6-4=8
which is a contradiction.= < Therefore K3 3 ts nonplanar. =

This solves the gas-water-electricity problem from Section 44. It is impossible to run
noncrossing utility lines between the three utilities and the three homes—if we could, we
would have a crossing-free embedding of K3 3. and that is impossible!

Not only is K3 3 nonplanar. but so is any subdivision graph we can form from K3 3. Fur-
thermore. any graph that contains a subdivision of K33 as a subgraph must be nonplanar as
well.

The following remarkable result of Kuratowski says that K5 and K3 3 are the “only™ non-
planar graphs. Here is what we mean.

Theorem 50.9 (Kuratowski)
A graph is planar if and only if it does not contain a subdivision of Ks or K5 3 as a subgrapl.
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We have shown the easier half of Kuratowski’s Theorem. If G contains a subdivision of
Ks or K53 as a subgraph, then G cannot be planar—if G were planar. we would be able to
create a crossing-tree embedding of K5 or K33, and that’s impossible.

The more ditficult part of this result is to prove that if a graph does not contain a subdivi-
sion of Ks or K33 as a subgraph. then the graph must be planar. For the proof. please see an
advanced text on graph theory.

Kuratowski's Theorem is a marvelous characterization of planarity. If a graph is planar,
I can convince yvou of this fact by presenting you with a crossing-free drawing. On the other
hand. if a graph is nonplanar. I can convince you of this fact by finding a subdivision of K5 or
K33 as a subgraph ot my graph.

Coloring planar graphs

We return to the map coloring problem of Section 44. As we discussed in Section 49, the
problem of coloring a map is equivalent to the problem of coloring a graph. What we did not
consider previously is that the graph that arises from a map has a special property: It must
be planar. To see why, we begin with a map. We locate one vertex for each country at the
capital city of that country. From that capital city, we draw curves out to its various borders.
These curves fan out in a starlike pattern and do not cross each other. We send each curve to
the midpoint of the border where it connects to the curve emanating from the capital city of
its neighbor. In this way, we have constructed a planar embedding of the graph we want to
color.

Thus the map coloring problem becomes: Is every planar graph four-colorable? The
answer is yes. This was proved in the 1970s by Appel and Haken.

Theorem 50.10 (Four Color)
If G is a planar graph. then 3(G) < 4.

This theorem is best possible in the sense that the number 4 cannot be replaced by a
smaller value. The graph Ky is planar, and %(K4) = 4 (Example 49.3).

The proof of the Four Color Theorem is long and complicated. One of the interesting
aspects of the proof is that it requires a large amount of computation. Roughly speaking.
Appel and Haken showed how to reduce the four color problem to about 2000 cases. They
also proved how each case can be checked by a computer program. They then created and
ran the necessary programs to check each of these cases.

In this section. we prove a simpler version of the Four Color Theorem. We show that every
planar graph is five-colorable. We start by proving that every planar graph 1s six-colorable.

Proposition 50.11 (Six color)
If G is a planar graph, then 3(G) < 0.

Proof. The proof is by induction on the number of vertices in the graph.

Basis case: The theorem is obviously true for all graphs on six or fewer vertices as we
can give each vertex a separate color.

Induction hypothesis: Suppose the theorem is true for all graphs on n vertices (i.e., all
planar graphs with n vertices are six-colorable).

Let G be a planar graph with n+ [ vertices. By Corollary 50.6, G contains a vertex. v,
with d{v) < 5. Let G’ = G — v. Notice that G’ is planar and has n vertices. By induction. G’
is six-colorable. Properly color the vertices of G using just six colors. We can extend this
coloring to G by giving v a color. Notice that v has at most five neighbors. and so, there is
some other color that we can assign to v that is different from the colors of its neighbors. This
yields a proper six-coloring of G, and so (G) < 6. &
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The overall logic in proving that (G) < 5 for planar graphs is similar. The difficult part
comes when there are five neighbors of vertex v, and they all have different colors.

Theorem 50.12 (Five color)
If G is a planar graph. then 7(G) < 5.

Proof. The proof is by induction on the number of vertices in the graph.

Basis case: The theorem is obviously true for all graphs on five or fewer vertices, as we
can give each vertex a separate color.

Induction hypothesis: Suppose the theorem is true for all graphs on n vertices (i.e.. all
planar graphs with n vertices are five-colorable).

Let G be a planar graph with 1+ 1 vertices. By Corollary 50.6. G contains a vertex. v.
with d(v) < 5. Let G’ = G —v. Notice that G’ is planar and has n vertices. By induction. G’
is five-colorable. Properly color the vertices of G’ using just five colors.

We want to extend this coloring to G by giving v a color. Consider the neighbors of v. If
among the neighbors of v there are only four different colors. then there 1s a left over color
that we can assign to v. This yields a proper five-coloring ot G.

The problem has been reduced to the case where d{v) = 5 and all five of its neighbors are
different colors. There is no way to extend this coloring to v; whatever color we might choose
for v would be the same color as one of its neighbors. So to extend the coloring to vertex v.
we need to recolor some vertices.

Since G is planar. choose a crossing-free embedding of G. Every vertex of G, except
v, has been colored with colors from the set {1.2.3.4.5}. Let u;. ua, ..., us be the five
neighbors of v in clockwise order, and without loss of generality, let us assume that u; has
colori(fori=1.2,....5).

The basic idea is to change the color on one of v's neighbors. Let’s change the color of u,
from 1 to 3. Now we can simply color v with color | and celebrate. The problem, however, s
that 1y might have a neighbor that has color 3: in that case. changing u to color 3 creates an
edge both of whose endpoints have the same color, and so the coloring would not be proper
{see the figure).

Simply changing the color of «; from 1 to 3 does not solve this problem. We need to be
more aggressive!

Let H; 3 be the subgraph of G induced by all vertices with colors 1 or 3. In other words.
we take only those vertices with color 1 or 3. and all edges that join such vertices, and call
that subgraph H, 3. Notice that if in one component of H) 3, we exchange colors 1 and 3, then
we still have a proper coloring of G’ (remember: v is not colored yet).

We therefore exchange colors 1 and 3 in the component of A 3 that contains vertex uj.
This color exchange results in a proper coloring of G” in which vertex u; has color 3. We are
all set to color vertex v with color 1. The problem. however. is that vertex u3 might also be in
the same component of H, 3 as vertex u;. Then, despite a 1-for-3 color exchange. v still has
all five colors present on its neighbors.

If 1} and w3 are in separate components of H, 3. then the 1-for-3 color exchange works
fine. We exchange colors | and 3 in the component of Hj 3 that includes u; (but not u3). This
gives a modified (but proper) five-coloring of G in which color 3 is not present on any of v's
neighbors, and so we may color v with color 1.

It remains to consider the case where 1 and 3 are in the same component of H, 3 (i.e.,
there is a path P in H, 3 from u; to u3 as in the figure).

If u; and uy are in the same component of H; 3, we proceed as follows. We argue as
before. but now we attempt to recolor vertex ux with color 4. Let H; 4 denote the subgraph
of G induced on the vertices of color 2 or color 4. If u> and uy are in separate components of
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Hy 4. then we can recolor w2 's component exchanging colors 2 and 4. The resulting moditied
coloring is a proper five-coloring of G’ in which no neighbor of v has color 2. In this case, we
can simply give vertex v color 2 and have a proper five-coloring of G.

The problem. as before. is that perhaps wa> and uy are in the same component of Ha 4.
We claim. however. this cannot happen! Suppose there is a path, Q. from u> to uy. Notice
that the vertices along Q are colored with colors 2 and 4, while the vertices on P are colored
with colors 1 and 3. Thus P and Q have no vertices in common. Furthermore, path P,
together with vertex v, forms a cycle. This cycles becomes a simple closed curve in the
plane. Notice that vertices u> and uy are on different sides of this curve! Therefore the path
Q from u> to 1y must pass from the inside of this simple closed curve to the outside. and
where 1t does. there is an edge crossing. However, by construction. this embedding has no
edge crossings! Therefore vertices 1> and 11y must be in separate components of > 4. and the
2-for-4 recoloring technique may be used. Finally, we color vertex v with color 2. giving a
proper five-coloring of G. 2

Recap

We introduced the concept of planar graphs: graphs that can be drawn in the plane without
edges crossing. We presented Euler's formula that relates the number of vertices. edges,
and faces of a connected planar graph and used it to find bounds on the number of edges
in a planar graph. We showed that Ks and K33 are nonplanar and discussed Kuratowski's
Theorem. which says. in essence, that these two graphs are the only “fundamental™ nonplanar
graphs. We then discussed the Four Color Theorem and proved the simpler result that all
planar graphs are five-colorable.





