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FIGURE 6.1.1 A joining-branching linear cascade (Example 6.1.1).

Compartment Models

A compartment model consists of a finite number of compartments (or boxes) con-
nected by arrows and a substance that moves through the boxes as directed by the
arrows. An arrow connecting two boxes means that the substance exits the box at the
foot of the arrow at some rate and enters the box at the head of the arrow at the same
rate. An arrow pointing toward one box, but not out of another, indicates an external
source of the substance (i.e., an inpur). These arrows are labeled with an “1,” where
{ is the input rate of the substance. An arrow that points away from a box, but not
toward another box, means that the substance exits the system from that box.

A compartment model is linear if the substance exits a box at a rate proportional to
the amount in the box (i.e, the substance moves according to first-order rate laws). So,
in a linear compartment model the rate at which the substance exits box 7/ and enters
another box at time 7 is k;x;(¢), where k; is a positive constant and x;(¢) is the amount
of the substance in box i at time ¢.

Linear cascudes are the simplest linear compartment models. They have no di-
rected chain of boxes and arrows which begin and end at the same box. We saw
several linear cascade models for radioactive decay in the Problem Set of Section 1.4
(see the margin figure). Here is an example of a more complex linear cascade.

From Boxes and Arrows to a System of ODEs
Apply the Balance Law (net rate of change = rate in - rate out) to each box in Fig-
ure 6.1.1 to produce a linear cascade with two inputs:

X =15 —kx

Xy = —kyxy

x5 = I+ kyxy + kaxy — kaxs — kax; (D
Xy = kax;

)Cl5 = k4)€3 — k5X5

The inputs are positive constants or nonnegative functions of time. You can solve a
linear cascade one equation at a time, using the Method of Integrating Factors from
Section 2.1 at each step. Turning this around, we can construct a linear cascade model
from a system of ODEs like (1) by using boxes and arrows as in Figure 6.1.1.
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FIGURE 6.1.3 Buildup of lead from two sets of ini- FIGURE 6.1.4 After 8000 days the lead content of
tial data (Example 6.1.3). the bones is still increasing (Example 6.1.3).

How do real people react to ingesting contaminated food and drink and breathing
lead-contaminated air from industrial pollution and exhaust fumes? Let’s look at a
case study and see what the model predicts.

EXAMPLE 6.1.3 Z'[] A Case Study in Southern California

Michael Rabinowitz, George Wetherill, and Joel Kopple! made a controlled study of
the lead intake and excretion of healthy volunteers living in Southern California. They
used the data from this study to estimate the values of the lead intake rate 7, in micro-
grams/day and the rate constants k ; in (days)~'. The estimated values are

I} =493; ky =0.0211, &y =0.0111, k3 =0.0039
kop = 0.0162, k; =0.0124, k3 = 0.000035 @

Using system (3) and the data (4) with two different sets of initial values, we have the
following IVPs for tracking lead through the body compartments:

x;=-0.0361x; + 0.0124x, + 0.000035x; +49.3, x,(0) =0; 1800
x5=0.0111x; — 0.0286x;, x(0) =0; 800 S
x7,=0.0039x, — 0.000035x3, x;(0) =0; 1000
Our numerical solver applied to the pair of IVPs (5) produced Figure 6.1.3, which
shows the amounts of lead in the body compartments over a period of 800 days.

For either set of initial conditions, the lead levels in the bloodstream and the tissues
appear to settle down to equilibrium values after the first 200 days, but the lead level
in the bones does not level off even after 8000 days (Figure 6.1.4). This is because
the transfer coefficient k3 = 0.000035 (day)~' of lead from the bones back into the
bloodstream is so small that the skeleton stores lead like a reservoir.

''Their work was reported in Science 182 (1973), pp. 725-727, and later extended by Batschelet, Brand, and
Steiner in J. Math. Biol. 8 (1979), pp. 15-23.
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The Lead System
System (5) with one set of initial conditions is an IVP for a linear system:

x; = —0.0361x, + 0.0124x, 4+ 0.000035x; + 49.3 x(0) = 1800

x, =0.0111x, — 0.0286x, x,2(0) = 800 9)
x5 = 0.0039x; — 0.000035x; x3(0) = 1000
Using matrix notation, we write IVP (9) in the form (8) with
X 1800
x=1x|, =1 800 |, =0
X3 1000
—0.0361 0.0124 0.000035 49.3
A= 0.0111 —0.0286 0 , F=| 0
0.0039 0 —0.000035 0

Figure 6.1.3 displays component curves for LVP (9).




