49.
$$5 + 2q = 3q$$

50.
$$-4 - 5p = -4p$$

51.
$$8x - 1 = 9 + 9x$$

52.
$$4x - 2 = -8 + 5x$$

53.
$$-3x + 1 = -1 - 2x$$

54.
$$-6x + 3 = -7 - 5x$$

(4) Identities, Conditional Equations, and Inconsistent Equations

Solve each equation. Identify each as a conditional equation, an inconsistent equation, or an identity.

See Examples 5 and 6.

See Recognizing Identities and Inconsistent Equations on page 107.

55.
$$x + x = 2x$$

56.
$$2x - x = x$$

57.
$$a-1=a+1$$

58.
$$r + 7 = r$$

59.
$$3y + 4y = 12y$$

60.
$$9t - 8t = 7$$

61.
$$-4 + 3(w - 1) = w + 2(w - 2) - 1$$

62.
$$4 - 5(w + 2) = 2(w - 1) - 7w - 4$$

63.
$$3(m+1) = 3(m+3)$$

64.
$$5(m-1) - 6(m+3) = 4 - m$$

65.
$$x + x = 2$$

66.
$$3x - 5 = 0$$

67.
$$2 - 3(5 - x) = 3x$$

68.
$$3 - 3(5 - x) = 0$$

69.
$$(3-3)(5-z)=0$$

70.
$$(2 \cdot 4 - 8)p = 0$$

71.
$$\frac{0}{x} = 0$$

72.
$$\frac{2x}{2} = x$$

73.
$$x \cdot x = x^2$$

74.
$$\frac{2x}{2x} = 1$$

Miscellaneous

Solve each equation.

75.
$$3x - 5 = 2x - 9$$

76.
$$5x - 9 = x - 4$$

77.
$$x + 2(x + 4) = 3(x + 3) - 1$$

78.
$$u + 3(u - 4) = 4(u - 5)$$

79.
$$23 - 5(3 - n) = -4(n - 2) + 9n$$

80.
$$-3 - 4(t - 5) = -2(t + 3) + 11$$

81.
$$0.05x + 30 = 0.4x - 5$$

82.
$$x - 0.08x = 460$$

83.
$$-\frac{2}{3}a + 1 = 2$$

84.
$$-\frac{3}{4}t = \frac{1}{2}$$

85.
$$\frac{y}{2} + \frac{y}{6} = 20$$

86.
$$\frac{3w}{5} - 1 = \frac{w}{2} + 1$$

87.
$$0.09x - 0.2(x + 4) = -1.46$$

88.
$$0.08x + 0.5(x + 100) = 73.2$$

89.
$$436x - 789 = -571$$

90.
$$0.08x + 4533 = 10x + 69$$

91.
$$\frac{x}{344} + 235 = 292$$

92.
$$34(x-98) = \frac{x}{2} + 475$$

(5) Applications

Solve each problem. See Example 7.

93. *Sales commission.* Danielle sold her house through an agent who charged 8% of the selling price. After the commission was paid, Danielle received \$117,760. If *x* is the selling price, then *x* satisfies

$$x - 0.08x = 117,760.$$

Solve this equation to find the selling price.

94. *Raising rabbits.* Before Roland sold two female rabbits, half of his rabbits were female. After the sale, only one-third of his rabbits were female. If *x* represents his original number of rabbits, then

$$\frac{1}{2}x - 2 = \frac{1}{3}(x - 2).$$

Solve this equation to find the number of rabbits that he had before the sale.

- Eavesdropping. Reginald overheard his boss complaining that his federal income tax for 2006 was \$60,531.
 - a) Use the accompanying graph to estimate his boss's taxable income for 2006.
 - b) Find his boss's exact taxable income for 2006 by solving the equation

$$42,170 + 0.33(x - 188,450) = 60,531.$$

Boost your grade at mathzone.com!

- > Practice Problems
- > Self-Tests > e-Professors
- > NetTutor
- > Videos

< Study Tips >

- It is a good idea to work with others, but don't be misled. Working a problem with help is not the same as working a problem on your
- · Math is personal. Make sure that you can do it.

Reading and Writing After reading this section, write out the answers to these questions. Use complete sentences.

- 1. What is an ordered pair?
- 2. What is the rectangular coordinate system?
- 3. What name is given to the point of intersection of the x-axis and the y-axis?
- 4. What is the graph of an equation?
- 5. What is a linear equation in two variables?
- 6. What are intercepts?

(1) Ordered Pairs

Complete each ordered pair so that it satisfies the given equation. See Example 1.

7.
$$y = 3x + 9$$
: (0,), (, 24), (2,)

8.
$$y = 2x + 5$$
: (8,), (-1,), (, -1)

9.
$$y = -3x - 7$$
: (0,), $\left(\frac{1}{3}, \right)$, (, -5)

10.
$$y = -5x - 3$$
: $(-1,), \left(-\frac{1}{2}, \right), (, -2)$

11.
$$y = 1.2x + 54.3$$
: (0,), (10,), (, 54.9)

12.
$$y = 1.8x + 22.6$$
: (1,), (-10,), (, 22.6)

13.
$$2x - 3y = 6$$
: (3,), (, -2), (12,)

14.
$$3x + 5y = 0$$
: $(-5,), (, -3), (10,)$

15.
$$0 \cdot y + x = 5$$
: (, -3), (, 5), (, 0)

16.
$$0 \cdot x + y = -6$$
: (3,), (-1,), (4,)

Use the given equations to find the missing coordinates in the following tables.

17.
$$y = -2x + 5$$

x	v
	,
-2	
0	
2	
	-3
	-7

18.
$$y = -x + 4$$

x	у	
-2		
0		
2		
	0	
	-2	

19.
$$y = \frac{1}{3}x + 2$$

x	у	
-6		
-3		
	2	
	3	

20.
$$y = -\frac{1}{2}x + 1$$

х	у
-2	
-1	
	1
	1/2

21.
$$y - 20x = 400$$

х		у
-3	0	
		0
-1	0	
	0	
		600

22.
$$200x + y = 50$$

X	У
$-\frac{1}{2}$	
	100
0	
	0
1/2	