1. Ler R be a ring, and 
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, prove, using axioms for a ring, the following

· The identity element of R s unique

· That –r is the unique element of R such tht (-r)+r = 0.

(hint, for part 1, suppose that 1 and 1’ ate two identities of R, show that 1-1’ must be zero, and for part 2, suppose that there is an element 
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 such that s+r = 0, and prove that s = -r)

2. let R be the set of complex 4th roots of 1. so R = {1,-1,i,-i}
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. Does R, together with the usual addition and multiplication of complex numbers, form a ring? Justify your answer.

· Let R be the ring 
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. Show that 
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is a subring but not an ideal of R.

· Let R be a ring. Define what is meant by a polynomial over R in the inderminate x.

4. let 
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be polynomials in 
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. Calculate f + g and fg in 
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