

Assignment 3a CSC 401
Name: Varunan Asokan
Date:

1. Create two stored PL/SQL procedures that process movie rental and movie return, based on the movie id and member id. More specifically:

· Procedure MOVIE_RENT_SP takes in three parameters: the movie id and the member id, and a payment method. It adds a new record to the MM_RENTAL table. It should also update the movie inventory, which is the MOVIE_QTY column of the MM_MOVIE table.

SQL> create sequence rental_id_seq start with 13;

Sequence created.

Note: This sequence will enable the auto-increment of rental_id column. Since the value of last record for the rental_id value is 12, so the sequence starts with 13 and will be incremented by 1 for each subsequent record that is inserted.

Create or replace procedure MOVIE_RENT_SP(movieid number, memberid number, paymentmethod number) as

 FOREIGN_KEY_VIOLATION EXCEPTION;
 PRAGMA EXCEPTION_INIT(FOREIGN_KEY_VIOLATION, -2291);

begin

 savepoint start_transaction;

 insert into MM_RENTAL(rental_id,member_id,movie_id,checkout_date,payment_methods_id) values(rental_id_seq.nextval,memberid,movieid,sysdate,paymentmethod);

 update MM_MOVIE set movie_qty=movie_qty-1 where movie_id=movieid;

 commit;

Exception

When FOREIGN_KEY_VIOLATION then
 dbms_output.put_line('Foreign Key Violation. Value not found in Parent table');
 rollback to start_transaction;

When INVALID_NUMBER Then
 dbms_output.put_line('Please enter only numbers');
 rollback to start_transaction;

When ROWTYPE_MISMATCH then
 dbms_output.put_line(' Invalid data type or precision');
 rollback to start_transaction;

When VALUE_ERROR then
 dbms_output.put_line('Error with data type');

When OTHERS Then
 dbms_output.put_line('An error has occurred due to invalid data');
 rollback to start_transaction;

end;
Records in the MM_RENTAL table BEFORE the stored procedure is executed

SQL> select * from mm_rental;

RENTAL_ID 	MEMBER_ID 	MOVIE_ID 	CHECKOUT_D CHECKIN_D PAYMENT_METHODS_ID

 1 	10 		11 		04-JUN-03 	2
 2 	10 	8 		04-JUN-03 	 2
 3 	12 	6 		04-JUN-03 	2
 4 	13 	3 		04-JUN-03 	5
 5 	13 	5 		04-JUN-03 	5
 6 	13 		11 		04-JUN-03 	5
 7 	14 		10 		04-JUN-03 	2
 8 	14 	7 		04-JUN-03 	2
 9 	12 	4 		04-JUN-03 	4
 10 		12 		12 		04-JUN-03 	4
 11 	12 	3 		04-JUN-03 	4
 12 	13 	4 		04-JUN-03 	5

12 rows selected.

Records in the MM_MOVIE table BEFORE the stored procedure is executed

SQL> select * from mm_movie;

 MOVIE_ID 		MOVIE_TITLE MOVIE_CAT_ID MOVIE_VALUE MOVIE_QTY S

 1 			Alien 1 	10 	5
 2 			Bladerunner 1 	8 		3
 3 			Star Wars 1 		15		11
 4 			Texas Chainsaw Masacre 2 	7 		2
 5 			Jaws 2 	7 		1
 6 			The good, the bad and the ugly 3 	7 		2
 7 			Silverado 3 	7 		1
 8 			Duck Soup 4 	5 		1
 9 			Planes, trains and automobiles 4 	5 		3
 10 			Waking Ned Devine 4 	12 	4
 11 			Deep Blue Sea 5 	14 	3
 12 			The Fifth Element 5 	15 	5

12 rows selected.

Executing the stored Procedure
SQL> exec MOVIE_RENT_SP(10,12,4);

PL/SQL procedure successfully completed.

Records in the MM_RENTAL table AFTER the stored procedure is executed

SQL> select * from mm_rental;

RENTAL_ID 	MEMBER_ID 	MOVIE_ID 	CHECKOUT_D CHECKIN_D PAYMENT_METHODS_ID

 1 	10 		11 		04-JUN-03 	2
 2 	10 	8 		04-JUN-03 	 2
 3 	12 	6 		04-JUN-03 	2
 4 	13 	3 		04-JUN-03 	5
 5 	13 	5 		04-JUN-03 	5
 6 	13 		11 		04-JUN-03 	5
 7 	14 		10 		04-JUN-03 	2
 8 	14 	7 		04-JUN-03 	2
 9 	12 	4 		04-JUN-03 	4
 10 		12 		12 		04-JUN-03 	4
 11 	12 	3 		04-JUN-03 	4
 12 	13 	4 		04-JUN-03 	5
 13 	12 		10 		05-JUN-09 	4

13 rows selected.

Records in the MM_MOVIE table AFTER the stored procedure is executed

SQL> select * from mm_movie;

 MOVIE_ID 		MOVIE_TITLE MOVIE_CAT_ID MOVIE_VALUE MOVIE_QTY S

 1 			Alien 1 	10 	5
 2 			Bladerunner 1 	8 		3
 3 			Star Wars 1 		15		11
 4 			Texas Chainsaw Masacre 2 	7 		2
 5 			Jaws 2 	7 		1
 6 			The good, the bad and the ugly 3 	7 		2
 7 			Silverado 3 	7 		1
 8 			Duck Soup 4 	5 		1
 9 			Planes, trains and automobiles 4 	5 		3
 10 		Waking Ned Devine 4 	12 	3 	
 11 			Deep Blue Sea 5 	14 	3
 12 			The Fifth Element 5 	15 	5

12 rows selected.

Note: The records marked in bold indicate that the stored procedure has worked properly. While in the mm_rental table, a new record is inserted. In case of mm_movie table the table is updated and the available movie quantity is decremented by 1.

· Procedure MOVIE_RETURN_SP takes in two parameters: the movie id and the member id. Based on these two values, it identifies the rental record in the MM_RENTAL table and records the current date in the CHECKIN_DATE column. It also needs to update the movie inventory in the MM_MOVIE table.

Create or replace procedure MOVIE_RETURN_SP(movieid number, memberid number) as

movid mm_rental.movie_id%type;
memid mm_rental.member_id%type;

begin

 savepoint start_transaction;

 select movie_id,member_id into movid, memid from mm_rental where movie_id=movieid;

 update MM_RENTAL set checkin_date=sysdate where member_id=memberid and movie_id=movieid;

 update MM_MOVIE set movie_qty=movie_qty+1 where movie_id=movieid;

commit;

Exception

When NO_DATA_FOUND then
 dbms_output.put_line('Memberid or movie id not found');
 rollback to start_transaction;

When INVALID_NUMBER Then
 dbms_output.put_line('Please enter only numbers');
 rollback to start_transaction;

When ROWTYPE_MISMATCH then
 dbms_output.put_line(' Invalid data type or precision');
 rollback to start_transaction;

When VALUE_ERROR then
 dbms_output.put_line('Error with data type');
 rollback to start_transaction;

When OTHERS Then
 dbms_output.put_line('An error has occurred due to invalid data');
 rollback to start_transaction;

end;
Executing Stored Procedure

SQL> exec movie_return_sp(10,12);

PL/SQL procedure successfully completed.

Records in the MM_RENTAL table AFTER the stored procedure is executed

SQL> select * from mm_rental;

RENTAL_ID 	MEMBER_ID 	MOVIE_ID 	CHECKOUT_D CHECKIN_D PAYMENT_METHODS_ID

 1 	10 		11 		04-JUN-03 	2
 2 	10 	8 		04-JUN-03 	 2
 3 	12 	6 		04-JUN-03 	2
 4 	13 	3 		04-JUN-03 	5
 5 	13 	5 		04-JUN-03 	5
 6 	13 		11 		04-JUN-03 	5
 7 	14 		10 		04-JUN-03 	2
 8 	14 	7 		04-JUN-03 	2
 9 	12 	4 		04-JUN-03 	4
 10 		12 		12 		04-JUN-03 	4
 11 	12 	3 		04-JUN-03 	4
 12 	13 	4 		04-JUN-03 	5
 13 	12 		10 		05-JUN-09 05-JUN-09 	4

13 rows selected.

Records in the MM_MOVIE table AFTER the stored procedure is executed

SQL> select * from mm_movie;

 MOVIE_ID 		MOVIE_TITLE MOVIE_CAT_ID MOVIE_VALUE MOVIE_QTY S

 1 			Alien 1 	10 	5
 2 			Bladerunner 1 	8 		3
 3 			Star Wars 1 		15		11
 4 			Texas Chainsaw Masacre 2 	7 		2
 5 			Jaws 2 	7 		1
 6 			The good, the bad and the ugly 3 	7 		2
 7 			Silverado 3 	7 		1
 8 			Duck Soup 4 	5 		1
 9 			Planes, trains and automobiles 4 	5 		3
 10 		Waking Ned Devine 4 	12 	4 	
 11 			Deep Blue Sea 5 	14 	3
 12 			The Fifth Element 5 	15 	5

12 rows selected.

Note: Both tables have been updated. The check-in date has been inserted in the mm_rental table while the movie quantity has been updated in the mm_movie table.

· Make sure you validate the parameters: The movie id and member id must indicate an existing movie and member, respectively, and the payment method must be one of the valid payment method codes.

Run tests that include various cases of calling these procedures with valid and invalid parameter values to prove that your code identifies the case and reacts properly.

Test 1: Checking for foreign key violations

SQL> exec movie_rent_sp(13,12,2);
Foreign Key Violation. Value not found in Parent table

PL/SQL procedure successfully completed.

Note: In this case 13 is an invalid movie id as there are only movies in the table from 1 to 12. This exception is raised due to the following two lines in the procedure code:
FOREIGN_KEY_VIOLATION EXCEPTION;
 PRAGMA EXCEPTION_INIT(FOREIGN_KEY_VIOLATION, -2291);

The error number 2291 is an Oracle system defined error number indicating foreign key violation. This is mapped to an user-defined exception namely FOREIGN_KEY_VIOLATION using the Exception_Init() directive.

Test 2: Invalid precision data.

SQL> exec movie_rent_sp(12,12,123);
An error has occurred due to invalid data

PL/SQL procedure successfully completed.

In this case they Payment method value given in the procedure is a 3-digit number, while the payment_method_type field in the table is of 2-digit precision.

Test 3: Checking for data not found (For the second stored procedure)

SQL> exec movie_return_sp(123,123);
Memberid or movie id not found

PL/SQL procedure successfully completed.

This is for the second stored procedure. If user enters a movie id or member id that is not found then this error message is displayed.
2. Write a function that retrieves the movie stock information and formats it in a friendly message to display for user requests. The display should resemble the following: "Star Wars is available: 11 on the shelf".

More specifically, create a function named MOVIE_STOCK_SF that takes in a movie id as a parameter. It should retrieve from the MM_MOVIE table the movie title and quantity information, build the output string and return it.

Again, make sure that your function behaves properly when given a non-existing movie id. Also, make sure that if a movie exists, but there are no copies available, you display a message like: "Star Wars is currently not available" rather than "Star Wars is available: 0 on the shelf".

Create or replace function MOVIE_STOCK_SF(movieid number) return varchar is

begin

declare

details_string varchar2(50);
title mm_movie.movie_title%type;
quantity mm_movie.movie_qty%type;
begin
select movie_title,movie_qty into title, quantity from mm_movie where movie_id=movieid;

if (quantity>0) then
	details_string:=title || ' is available : ' ||quantity || ' on the shelf';
else
	details_string:=title || ' is currently not available';
end if;

return details_string;

Exception

When NO_DATA_FOUND then
 details_string:='Movie id not found';
 return details_string;

When INVALID_NUMBER Then
 details_string:='Please enter only numbers';
 return details_string;

When ROWTYPE_MISMATCH then
 details_string:=' Invalid data type or precision';
 return details_string;

When VALUE_ERROR then
 details_string:='Error with data type';
 return details_string;

When OTHERS Then
 details_string:='An error has occurred due to invalid data';
 return details_string;

end;
end;

Run tests with function calls that cover all possible scenarios including existing and non-existing movie ids, and available and unavailable movies. You probably will need to change some data in your tables to create a particular scenario.

Executing the Function:

Scenario 1:

In order to execute the function, I have created a small test block a named Test.sql from where the procedure is called:

declare
begin
dbms_output.put_line(MOVIE_STOCK_SF(121));
end;

Output:
SQL> @Test
 5 /
Movie id not found

Scenario 2:

declare
begin
dbms_output.put_line(MOVIE_STOCK_SF(12));
end;

SQL> @Test
 5 /
The Fifth Element is available : 5 on the shelf

PL/SQL procedure successfully completed.

Scenario 3:
declare
begin
dbms_output.put_line(MOVIE_STOCK_SF(5));
end;

However for this scenario to work, I have updated the table so that record with movie_id as 5 has quantity as 0.

SQL> update mm_movie set movie_qty=0 where movie_id=5;

1 row updated.

SQL> @Test
 5 /
Jaws is currently not available

Copyright ©2009 Cardean Learning Group LLC. All rights reserved.
