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numbers on the dominoes are all pairs of values chosen from {1.2.3.4.5} (we do not
include dominoes where the two numbers are the same). Notice that we have arranged
the ten dominoes in a ring so that. where two dominoes meet. they show the same
number.

For what values of n > 2 is it possible to form a domuno ring using all () dominoes

formed by taking all pairs of values from {1.2.3.....1}? Prove your answer.

Note: In a conventional box of dominoes. there are also dominoes both of whose
squares have the same number of dots. You may either ignore these “doubles™ or
explain how they can easily be inserted into a ring made with the other dominoes.

3. Let G be a connected graph that is not Eulerian. Prove that it is possible to add a single
vertex to G together with some edges from this new vertex to some old vertices so that
the new graph 1s Eulerian.

4. Let G be a connected graph that is not Eulerian. In G there must be an even number of
odd degree vertices (see Exercise 44.12). Let ay.bj.ax.ba.. ... a,.b; be the vertices of
odd degree in G.

If we add edges a1by.axbs. . ... a;b; to G. does this give an Eulerian graph?

5. Let G be an Eulerian graph. Prove that it is possible to partition the edge set of G so
that the edges in each part of the partition form a cycle of G.

The figure shows such a partition in which the edges from different parts of the partition
are drawn in different colors and line styles.

6. Is it possible to walk the seven bridges of Konigsburg so that vou cross every bridge
exactly twice, once in each direction?

49 Coloring

The four color map problem and the exam scheduling problem are both examples of graph
coloring problems. The general problem is as follows. Let G be a graph. To each vertex of
G. we wish to assign a color. The restriction is that adjacent vertices must receive different
colors. Of course, we could give every vertex its own color. but this is not terribly interesting
and not relevant to applications. The objective is to use as few colors as possible.

For example. consider the map coloring problem from Section 44. We can convert this
problem into a graph coloring problem by representing each country as a vertex of a graph.
Two vertices in this graph are adjacent exactly when the countries they represent share a
common border. Thus coloring the countries on the map corresponds exactly to coloring the
vertices of the graph.

We can also convert the final exam scheduling problem into a graph coloring problem.
The vertices of this graph represent the courses at the university. Two vertices are adjacent
when the courses they represent have a common student enrolled. The colors on the vertices
represent the different examination time slots. Minimizing the number of colors assigned to
the vertices corresponds to minimizing the number of exam periods.

Core concepts

Colors are phenomena of the physical world. and graphs are mathematical objects. It is mildly
ifogical to speak of applying colors (physical pigments) to vertices (abstract elements).
The careful way to define graph coloring is to give a mathematical definition of coloring.
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Detinition 49.1 (Graph coloring)
Let G be a graph and let & be a positive integer. A k-coloring of G is a function

foV(G) — {1200 k)
We call this coloring proper provided

Vv € E(G). flg = fv)
If a graph has a proper k-coloring, we call it k-colorable.

The central idea in the definition is the function f. To each vertex v € V[ G). the function
[ associates a value f{v). The value f(v) is the color of v. The palette of colors we use is the
set {1.2.....k}; we are using positive ntegers as “colors.” Thus f(v) = 3 means that vertex
v s assigned color 3 by the coloring f.

The condition ¥av € E{G). f(x)# f(¥) means that whenever vertices x and y are adjacent
(form an edge of G), then f{x) # f(v) (the vertices must get different colors). In a proper
coloring. adjacent vertices are not assigned the same color.

Notice what the definition does not require: It does not say that all the colors must be
used; that 1s. it does not require f to be onto. The number k refers to the size of the palette of
colors available—it is not a demand that all & colors be used. If. say, a graph is five-colorable,
then it is also six-colorable. We can simply add color 6 to the palette and then not use it.

Although the formal definition of coloring specifies that the colors we use are integers.
we often refer to real colors when describing graph coloring.

The goal in graph coloring is to use as few colors as possible.

Definition 49.2 (Chromatic number)
Let G be u graph. The smallest positive integer & for which G is k-colorable is called the
chromatic number of GG. The chromatic number of G is denoted 2 (G).

The symbol y is not an x. Itis a lowercase Greek chi.

Example 49.3

Consider the complete graph K. We can properly color K, with n-colors by giving every

vertex a different color. Can we do better? No. Since every vertex is adjacent to every

other vertex in K. no twa vertices may receive the same color, and so 2 colors are required.

Therefore (K, )} = n.

Notice that for any graph G with n vertices. we have ¥{G} < n because we can always
color each vertex a separate color. This means that among all graphs with n vertices, K,, has
the largest chromatic number. We can say a little bit more.

Proposition 49.4
Let G be a subgraph of H. Then y{G) < x(H).

Proof. Given a proper coloring of H, we can simply copy those colors to the vertices of G to
achieve a proper coloring of G. So if we used only ¥ (H ) colors to color the vertices of H. we
have used at most ¥ (H ) colors in a proper coloring of G. £

Proposition 48.5
Let G be a graph with maximwn degree A Then 3(G) < A=+ 1.
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Proof. Suppose the vertices of G are {v{.v2. -+ .v,} and we have a palette of A+ | colors.
We color the vertices of G as follows.

To begin. no vertex in G is assigned a color. Assign any color from the palette to vertex
vi. Next we color vertex v»>. We take any color we wish from the palette. as long as the
coloring is proper. In other words. if vjv is an edge. we may not assign the same color to va
that we gave to vy. We continue in exactly this fashion through all the vertices. That is. when
we come to vertex 1. we assign to vertex v; any color from the palette we wish. just making
certain that the color on vertex v; is not the same as any of its already-colored neighbors.

The issue 1s: Are there sutficiently many colors in the palette so that this procedure never
gets stuck. (i.e.. we never reach a vertex where there is no legal color left to choose). Since
every vertex has at most A neighbors and since there are A+ 1 colors in the palette. we can
never get stuck. Thus this procedure produces a proper A — l-coloring of the graph. Hence
WGy <A+

Example 49.6

What 15 the chromatic number of the cvele 7 I n1s even, we can alternate colors (black.
white. bluck. white, etc.} around the cyele. When o is even, this vields a valid coloring.
However, 1if nis odd. then vertex 1 and vertex n would receive would both be bluck if we
alternated colors around the ¢cycle. See the figure. Thus. for n-odd. C, is not two-colorable. It
is. however. three-colorable. We can alternately cotor vertices 1 through n — 1 with black and
white and then color vertex 2t with, say, blue. This gives a proper three-coloring of G, [Also.
by Proposition 49.5, we have x(C,) < A(C,)+ 1 =2+1= 3] Thus

o 2 ifmiseven, and
Xl =< .
3 afeisodd.
Note the following interesting point about this example: The chromatic number of Cy is
3. but Cy does not contain K3 as a subgraph.

Bipartite graphs

Which graphs are one-colorable? That is. can we describe the class of all graphs G for which
2G) =17

Notice that ¥(G) = 1 means that we can properly 1-color the graph G. This means that if
we assign all vertices the same color, this is a proper coloring. How can this be? It implies
that both end points of any edge in G are the same color. which is a blatant violation! The
answer is: There can be no edges in G. In other words, we have the following.

Proposition 49.7
A graph G is one-colorable if and only if it is edgeless.

That was easy! Let's move on to characterizing two-colorable graphs. that is. graphs G
for which % (G) < 2. These graphs have a special name.

Detinition 49.8 (Bipartite graphs)
A graph G s calted bipartire provided it 1s 2-colorable.

Here is another useful way to describe bipartite graphs. Let G = (V.E) be a bipartite
graph and select a proper two-coloring. Let X be the set of all vertices that receives one of the
two colors. and let ¥ be the set of all vertices that receive the other color. Notice that {X.Y}
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forms u partition of the vertex set V. Furthermore. if ¢ is any edge of G, then ¢ has one of its
endpoints in X and its other endpointin Y.

The partition of V into the sets X and Y so that every edge of G has one end in X and one
end in Y s called a bipartition of the bipartite :raph. When writing about bipartite graphs. it is
customary to write sentences such as the following: Let G be a bipartite graph with bipartition
V= XUY.... This means that X and " are the two parts of the bipartition. The sets X and ¥
are called by some authors (this author not included) the partire sets of the bipartite graph.

The problem we address here is: Which graphs are bipartite? For example. based on
Example 49.6. we see that even cycles are bipartite. but odd cycles are not. The following
result gives another wide class of examples.

Proposition 49.9

Trees are bipartize.
We prove this using the method in Proof Template 23.

Proof. The proof is by induction on the number of vertices in the tree.

Basis case: Clearly a tree with only one vertex is bipartite. Indeed. y(K,) =1 < 2.

Induction hypothesis: Every tree with i vertices is bipartite.

Let T be atree with n + 1 vertices. Let vbe aleaf of T and let T/ =T —v. Since T is a
tree with 1 vertices. by induction 7" is bipartite. Properly color 77 using the two colors black
and white.

Now consider v's neighbor—call it w. Whatever color w has, we can give v the other
color (e.g.. if w is white, we color v black).

Since v has only one neighbor, this gives a proper two-coloring of T. €

Trees and even cycles are bipartite. What other graphs are bipartite? Here is another
important class of bipartite graphs.

Definition 48.10 (Complete bipartite graphs)
Letnon be positive integers. The complete bipariite graph Ky, 15w graph whose vertices can
be partitioned Vo= X Y so that

e X =un
e Y =um,

o forallx & X and forall v € ¥ xy is an edge. and

&

o 110 edge has both its endpoints in X or both its endpomts in Y.
The graph in the figure 1s Ky 3.

The following theorem describes precisely which graphs are bipartite. This is an example of a characterization
theorem.

Theorem 49.11
A graph is bipartite if and only if it does not contain an odd cvele.

The proof of this result is a bit complicated. We present it in a moment, but first, we
explain why this is a wonderful theorem.

Suppose I have a graph and I want to convince you that it is bipartite. I can do this by
coloring the vertices and then showing you my coloring. You can patiently inspect each edge

P N




[image: image5.png]Section 49 e Coloring

376

and notice that the two endpoints of every edge have different colors. You will be certain that
the graph is bipartite.

On the other hand. suppose I present you with a complicated graph that 1s not bipartite.
The tollowing argument is not terribly persuasive: I tried for days to properly two-color
this graph. and I really worked quite hard. Trust me! There is no way this graph can be
two-colored.”

Theorem 49.11 guarantees that I will always be able to present a much better and simpler
argument. I can find an odd cycle in the graph. show it to you. and then you will be convinced
that the graph is not bipartite.

The proot of Theorem 49.11 requires the following concept.

Definition 48.12 (Distance)

Let G be a graph and let x.v be vertices of G. The distance from x to ¥ in G is the length
of a shortest (x.v}-path. In case there is no such path. we may either say that the distance 18
undetfined or .

The distance from x to v 1s denoted d{x. v}

For the graph in the figure, there are several (x.v)-paths; the shortest among them have
length two. Thus d{x.y) = 2.

Proof (of Theorem 49.11).
{=) Let G be a bipartite graph. Suppose. for sake of contradiction, that G contains an odd
cycle C as a subgraph. By Proposition 49.4, we have

3= %(C) < x(G) < 2.

a contradiction. Therefore G does not contain an odd cycle.

(<=} Next we show that if G does not contain an odd cycle, then G is bipartite. We begin by
proving a special case of this result. We show that if G is connected and does not contain an
odd cycle. then G is bipartite.

Suppose G is connected and does not contain an odd cycle. Let u be any vertex in V{G).
Define two subsets of V(G) as follows:

X ={xeV(G):d(ux)isodd}. and
Y ={yeV(G): d(uy)is even}.

In words. X and ¥ contain those vertices in G that are at odd and even distance from u.
respectively. Note that 1 € ¥ because d{u.1) = 0. Also note that V(G) = X UY (every vertex
is some finite distance from i because, by hypothesis. G is connected) and ¥ 1Y = 0 (because
the distance from a given vertex to u cannot be both odd and even).

We color the vertices in X black and the vertices in ¥ white. We claim that this gives a
proper two-coloring of G. To prove this, we must show that there are no two vertices in X
that are adjacent and there are no two vertices in Y that are adjacent.

Suppose. for the sake of contradiction. there are two vertices xj.x2 € X with x; ~x2. Let
Py be a shortest path from u to x;. Because xq € X. we know that d(u.x) is odd. so the length
of P, is odd. Likewise let P> be a shortest (1. x2)-path; its length is also odd.

It is tempting (but incorrect!) to conclude as follows. Concatenate

P, +(,\‘1 N,\':)-FP{P

X
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That 1s. traverse P from u to x; (odd distance), go from x| to x; (odd distance), and finally,
g0 back to i along P> (odd again). The total distance is odd. so we have an odd cycle.

The error is that Py + (x| ~x2) + P{] might not be a cycle (see the figure). The paths /
and P> might have vertices and edges in common.

To fix this problem. let «’ denote the last vertex that Py and P> have in common. That is,
as we traverse Py from u to x). we know that P, and P> have at least one vertex in common,
namely. u. Perhaps they have other vertices in common. In any case, since P; ends at x; and
P, ends at xo. eventually along Py we reach the last vertex these two paths have in common.
Atter i/, there are no further P vertices on P|. Therefore. if we traverse P; from «’ to x;. then
traverse the edge xpx2. and finally return to #’ along P{], we have a cycle. The question is: Is
this an odd cycle?

We note that the section of Py from u to ' is as short as possible. Otherwise. if there
were a shorter path O from u o ¢/, then we could concatenate Q with the {1/, xy)-section of
Py and achieve a (. x))-walk that is shorter than Py, from which we could construct a {u, x| )-
path that is shorter than Py; this is a contradiction. So the (u.1/)-section of Py is as short as
possible. Likewise the (u.u’)-section of P> is as short as possible. Hence the (u.u’)-sections
of P; and P> must have the same length.

Now consider the (u.xy)- and (u. xa2)-sections of Py and Py, respectively. We know that
Py and P> both have odd length. From them. we delete the same length: their {1 u')-sections.
Thus the two sections that remain are either both odd or both even-—they have the same parity.

We now conclude that the cycle C is an odd cycle. The cycle consists of the edge xx2
(length 1) and the two sections from ' of P; and P> (same parity). Since 1+ odd + odd and
I = even +~even are both odd, we conclude that C is an odd cycle. But by hypothesis. G has
no odd cycles.= < Theretore there is no edge in G both of whose endpoints are in X.

Might there be an edge with both ends in ¥? No. The argument is exactly the same as
before. The only fact we used about the paths P; and P» is that their lengths had the same
parity: it didn’t really matter that they were both odd. If they were both even, the exact same
argument applies. There are no edges between any pair of vertices of Y.

Therefore we have a proper two-coloring of G, and hence G is bipartite.

To finish the proof. we need to consider the case when G is disconnected. Suppose G is
a disconnected graph that contains no odd cycles. Let H), Ha.....H. be its connected com-
ponents. Note that since G does not contain an odd cycle, neither do any of its components.
Hence. by the argument above. they are bipartite. Let X;UY; be a bipartition of V(H;) (with

1 < i< e). Finally, let

X=X UuXou---UX, and
Y =Yiu¥, U - UY,..

We claim that X Y is a biparution of V{G).

Please observe that X and Y are pairwise disjoint and their union is V{G). There can be
no edge between two vertices in X; because X; UY; is a bipartition, and there can be no edge
between vertices of X; and X; (with i # j) because these vertices are in separate components
of G. Therefore no edge has both ends in X. Similarly. no edge has both ends in Y. Therefore
X UY is a bipartition of V(G), and so G is bipartite. ©

The ease of two-coloring and the difficulty of three-coloring

The proof of Theorem 49.11 gives us a method for determining whether or not a graph is
bipartite. and the statement itself gives us an efficient way to convince others that we have
correctly determined whether or not a graph is bipartite.
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We begin with a graph, all of whose vertices are uncolored. We arbitrarily color one
vertex white. Then we color all its neighbors black. Now we color all neighbors of black
vertices white. and then all neighbors of black vertices white.

At some point in this procedure. we may color two adjacent vertices the same color. If
we do. we can retrace our steps and find an odd cycle. proving the graph is not bipartite.

We may also find that this coloring procedure finds no new vertices to color, but yet, there
remain uncolored vertices. In this case. we realize the graph is not connected. and we restart
this procedure in another component.

If. after doing this procedure in every component, we never find adjacent vertices with
the same color. then we have found a bipartition of the graph.

This procedure is simple and etficient. We know that once we color a vertex. say, black.
all its neighbors must be white. There 1s no choice in this matter because there are only two
colors.

The situation for three-coloring graphs is more complicated. Let’s suppose the three
colors are red. blue. and green. We color one vertex red. Now, what shall we color its
neighbors?? We have choices, and in this case, choices complicate our lives.

We do not have a result akin to Theorem 49.11 for three-colorable graphs. If I have a
three-coloring for a graph G, I can convince you that G is three-colorable simply by showing
vou the coloring. However, if G is not three-colorable. how would I readily convince you that
no such coloring is possible? There is no known answer to this problem.

We ask:

Is it difficult to three-color graphs?

This question itself is difficult! Most computer scientists and mathematicians believe that it
is difficult to properly three-color a graph or show no such coloring exists. However. there is
no proof that this is a hard problem.

Computer scientists have identified a wide collection of problems that are on a par with
graph coloring. That is. they have shown that if any one problem in this special collection has
an efficient solution. then they all do. Problems in this category are known as NP-complete.
A full description of what it means for a problem to be in this category is beyond the reaim
of this book. Our point is that there are no known efficient procedures to determine whether
or not a graph is three-colorable {or k-colorable for any fixed value of k£ > 2), and so there 1s
no known efticient procedure for calculating x(G). There are. however. heuristic and approx-
imate methods that often give good results.

Recap

We introduced the concepts of a proper coloring of a graph and the chromatic number. We
analyzed the class of bipartite (two-colorable) graphs and characterized such graphs by the
fact that they do not contain odd cycles.




