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EXERCISES 18.4

NOTE: Excrcises 1-10 relate to Example 1 the remainder to (@) Then the problem
Example 2.
L Show that for the case where f(a) = constant = F,  au, —u = —F(z.t),
39) (11 gives u(z, ) = F. HINT: Make the change of variables a
(e—€)?/(4a%%) = 4 in the integral, and use the known inte- u(z,0) = f(),
gral [, exp (=62)d§ = V. i
(L”()a)g S‘c‘:?l :;;:sfz;us‘;l::s;‘ where f(z) = FH(2), in (13), ogether with suitable boundary conditions at z = 00, has
% & o inputs, the initial temperature () and the source distri-
(t) Verify, directly, that (14) satisfes the PDE (12) and the ini- huuoon(t, 1), By Iineari\l;fme ms.{in!e u(z, ) should be the
tial condition (1b). oum of the responses to these individual inputs. Specifically,
3, Prove the claim, made in Comment 3 of Example 1, that  show that if v(z,t) and w(z, t) are solutions to the problems
I, K (€ — z3t) dé = 1 for all t, where K is given by (18b).
HIRT: Use the change of variables suggested in Exercise 1.
4 Show that erf (z), defined by (15), is an odd function, as is
claimed in Comment 2 of Example 1.
5. We used the Fourier transform to solve (1). Use the Laplace
\ransform instead, and obtain the ODE ®2)

Signatures

(-0 <z <0, 0<t< o)
(~00 <z < )

s u(z,5) =
will work,

vz —ve =0, (—cc<1<oo,0<(<oo)

v(z,0) = §(2)

(-0 < T < 0)

4 and
a2
Tpe — 5 8= —3/(0)-
a? a? 2.
o?w,, —w = —F(z,t), (o0 <z <00, 0<t<oo)

6 Verify, by direct substitution, that the kemel K given by g

(13b) satisfes the diffusion equation (1a), as was claimed in (-0 <z <)

Example 1.

7. Use (18) to show that if the initial temperature f(z) is

(a) a periodic function of z, with period 7, then so is the solu-
tion u(z,t).

(b) an odd function of z, then so is the solution u(, ).

(© an even function of z, then so is the solution u(z. 1).

(8.3)

respectively, then u(z,t) = v(z,t) + w(z,t). Since the v

problem is already solved in Example 1, the remainder of this
rcise is devoted to the w problem.

/(b) Consider the case where I = F(¢) s a function of t alone.

Choosing between the Fourier and Laplace transforms, solve

8) (nclusion of a source term) In Example 3 of Section 168 for w. (The answer should be in the form of an iniegral.) Ex-
| e find that if there is a heat source distribution F'(z, t) within} _plain why you selected the transform that you did, and not the
‘be medium, then in place of the homogencous field equation ~other
Ifu) = 0Puzz — ug = 0 we have the nonhomogeneous equa-| (<) Now consider the case where F = F(g) is a function of =
on L{u] = auzs — e = —F(@,1); F acts as a source where gloge. Using  Fourier transform, show that
F >0 and as a sink where F < 0. 2
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(d) The inverse needed in (8.4) is not found in our brief ta-
ble (Appendix D). Nonetheless, show that
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HINT: Letting § = (1 — e=*"*"*)/(aw?), show that g, =
et = g, 5o that g, = {exp [~a?/(da’t)]}/(2a/),
with g|,_, = 0. Thus,

—22/(4a’r)

ﬁ dr.

0] Sesx4ssn

feu

100

where foy is the square wave shown here, In
separation-of-variables solution amounts to expan
a Fourier sine series, finding the response due
term, and then adding them. Alternatively, sppos
expand fexi () as fext(z) = fi(e) + fafa) +
;s are as shown, That is,

Joxe(2) = {~100+ 200[H (z) - H(z~LJ}
+200{H(x +2L) - H(z + L
+H(z - 2L) - H(o - 3L)}
+200{H(z + 4L) - H(z +31)
+H(z — 4L) - H(z - L)} 42
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Section 18.4

8. (b) We can use either transform but the Laplace transform is a bit simpler because the transformed equation
2, — s = —F(s) has only a constant forcing function [i.e., F(s) does not vary with the active variable z] whereas
if we use the Fourier transform then the transformed equation —a w2 — 1, = —F(t) has a nonconstant forcing
function. Then @(z, s) = AeV®2/® 4 Be—vVoz/a | F(s)/s. Reasoning as in (29)~(31), we require that w(z, s) — 0
T > £0050 A =B =0and w(z,t) = L-Y{F(s)/s} = f; F(r)dr (which, as we could have anticipated from
the beginning, varies with ¢ but not with z). 15. Atz = 0.5 Hastings’ formula gives erf (0.5) ~ 0.5204876, whereas
tables give erf (0.5) = 0.5204999. The difference, 0.0000123, is indeed within the claimed accuracy.

Section 18.5

8. (a) Yes (d) No, due to the u® (g) Yes () Yes  (m)No; L = 2302 /022 + 3228/0z — 82/8t? + 1 and z8 is not
even, nor is 3z odd

Section 18.6

5. Here are a few: U;; = 0.2, Uz = 0.2, and Uz = 0.44896 7. Here are a few: Uy = 76, Uy; = 92, and
Uss = 38.0096, where we have used the average values Uy = 50 and Uyg = 50 at the corners.
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