1) Let H be the ring of quaternions.

· Let 
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. Suppose 
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 (so not all of a,b,c,d are zero). Let y be the quaternion
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Show that xy=1.

(Remark, it can be similarly shown that yx=1. thus x is a unit in H. this H s a division ring (bit it is not a field, as multiplication is not commutative – eg 
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· Let r=1-i+2j+k, s=j+k 
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. Calculate      rs       showing all working.

2) An extension of 
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Let  
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  a subset of the ring 
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 (the set of real numbers). Show that R is a subring of 
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.

(Remark, the ring R is denoted 
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¢

, and s one of the original motivating examples of the theory. Hilbert said the term zahlring [number ring] for sets of this form, since they ‘close up’ [like a circle!] under multiplication. This is the origin of the term ‘ring’ we use today.)

3) Let R be a ring and 
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. Let S=
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 be the ring of n x n matrices with entries in R. what is the identity element of S?

Define a map
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, taking 
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 to the n x n matrix
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Where the empty spaces indicate zeros. Show that 
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 is a ring homomorphism.
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