Show that if $X \in \operatorname{Cauch} y(0,1)$, then so is $\frac{1}{X}$

So far I have:
Set $Z=\frac{1}{X}$. Note: $f(x)=\frac{1}{\pi} \quad \frac{1}{1+x^{2}}, \quad-\infty<x<\infty$
$F(z)=P[Z \leq z]=P\left[\frac{1}{X} \leq z\right]=P\left[X \leq z^{3}\right]=\int_{?}^{z^{3}} \frac{1}{\pi} \frac{1}{1+x^{2}} d x$
$f(z)=\frac{d}{d z}\left(\int_{?}^{z^{3}} \frac{1}{\pi} \frac{1}{1+z^{2}} d x\right)$
That's where I'm stuck!!!

