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· Let K be a fixed integer and let 
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 be a function from a group G to itself with 
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, show that 
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 is a group homomorphism when G is abelian. Show by example that 
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 need not be a homomorphism when G is not commutative.

· Let 
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be two group homomorphism. Prove that 
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:G->K is also a group homomorphism.

· Let G be the subgroup of the permutation group 
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generated by the permutation
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Prove that G has order 6. Let 
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 be a group homomorphism from G to the permutation group 
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which is also of order 6. By considering the image of
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, prove that 
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 cannot be an n isomorphism.
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