Use words to describe solution process.

Use math symbol editor like LateX, please no stuff like <=.

Here’s the problem.

[image: image1.png]1. Let G be a graph in which every vertex has degree 2. Is G necessarily a cycle?




I’ve attached some background information below.
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Perhaps the simplest family of graphs are the trees. Graph theory problems can be difficuit.
Often. a good way to begin thinking about these problems is to solve them for trees. Trees are
also the most basic connected graph. What are trees? They are connected graphs that have
no cycles. We begin by defining the term cyvcle.

Cycles

Definition 47.1 (Cycle)

A cyele is a walk of length at least three in which the first and last vertex are the same, but no
other vertices are repeated.

The term cvele also refers to a (subjgraph consisting of the vertices and edges of such a walk.
In other words. a cycle is a graph of the form G = (V. £) where

V e {\’].l‘: ..... \‘”}. llnd

£ o= {"1 V2.VavaLL.. Ve 1V YoVt }' .

A cycle {graph) on n vertices 1s denoted C,.

In the upper figure we see a cycle of length six as a walk in a graph. The lower figure
shows the graph Cg.

Forests and trees

Definition 47.2 (Forest)
Let G be a graph. If G contains no cycles, then we call G acvelic. Alternatively, we call G a
forest.

The term acvclic is more natural and (almost) does not need a definition—its standard
English meaning is a perfect match for its mathematical usage. The term forest is widely

used as well. The rationale for this word is that. just as in real life. a forest is a collection of
trees.
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[image: image3.png]Definition 47.3 (Tree)
A tree ts a connected, acyelic graph.

In other words. a tree is a connected forest.

The forest in the figure contains four connected components. Each component of a forest
1S a tree. )

Note that a single isolated vertex (e.g.. the graph K) is a tree; it is the simplest tree
possible.

There is only one possible structure for a tree on two vertices: Since a tree on two vertices
must be connected. there must be an edge joining the two vertices. This is the only possible
edge in the graph. and a graph on two vertices cannot have a cycle (a cycle requires at least
three distinct vertices). Therefore any tree on two vertices must be a K».

There is also only one possible structure tor a tree on three vertices. Since the graph 1s
connected, there certainly must be at least one edge. say, joining vertices a and b. However. if
there were only one edge. then the third vertex. ¢, would not be connected to either a or b. and
so the graph would not be connected. Thus there must be at least one more edge—without
loss of generality. let us say that it is the edge from b to c¢. So far we have ¢ ~ b ~ ¢, but
ac ¢ E. Now the graph is connected. Might we also add the edge ac? If we do, the graph is
connected. but it is no longer acyclic, as we would have the cycle a ~ b ~ ¢ ~ a. Any tree on
three vertices must be a Ps.

However. on four vertices, we can have two different sorts of trees. We can have the path
Py and we can have a srar: a graph of the form G = (V,E) where

V={a.xvz} and E={ax.av.az}.

Properties of trees

Trees have a number of interesting properties. Here we explore several of them.

Theorem 47 .4

Let T be « tree. Forany rwo vertices a and b in VT ;. there is a unique {a, b)-parh.
Conversely, if G is a graph witli the properry that for any two vertices v, there is exactly
one {wvi-path, then G must be a tree.

Proof. This is an if-and-only-if style theorem. It can be rephrased: A graph is a tree if and
only if between any two vertices there is a unique path.

(=) Suppose T is a tree and let a.b € V(T). We need to prove that there is a unique (a.b)-
path in 7. We have two things to prove:

e Existence: The path exists.
e Uniqueness: There can be only one such path.

The first task is easy. There exists an («. b)-path because (by definition) trees are connected.
The second task is more complicated. To prove uniqueness, we use Proof Template 14.
Suppose. for the sake of contradiction, there were two (or more) different {a.b)-paths in

T let us call them P and Q. It would be tempting at this point to reason as follows: “Follow

that path P from a to b, and then the path Q from b to a; this gives a cycle—contradiction!

Therefore there can only be one (a,b)-path.” However, this reasoning is incorrect. As the

figure suggests. the paths P and Q might overlap or cross each other; we cannot say that

P+ Q Vis acycle. We need to be more careful.
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Since P and Q are different paths. we know that at some point one of them traverses a
ditferent edge than the other. Let us say that from a to x the paths are the same (perhaps a = x)
but then they traverse ditferent edges: that is,

P: a~-~x~y~--~b

Q: ar~ - ~x~ZI~-~b

This implies that xv is an edge of P and not an edge of O (because Q cannot repeat vertices—
it’s a path!—the vertex x does not appear again on Q and so there is no opportunity to see the
edge xv on O).

Now consider the graph T — xv (delete the edge xy from 7). We claim there is an (x,y)-
path in T —xv. Why? Notice that there is an (x.v)-walk in T — xy: Start at x. follow P~! from
¥ 1o a. follow Q from a to b. and then follow P! from b to v. Notice that on this walk we
never traverse the edge xv. Thus there is an (x,v)-walk in 7 — xy. Therefore. by Lemma 46.7.
there 1s an (x.v)-path in 7 — xv: let us call this path R. The path R must contain at least one
vertex in addition to x and v because R does not use the edge xv to get from x to v. Now, if
we add the edge xv to the path R, we have a cycle (traverse R from x to v and then back to
x along the edge vx). This. at long last. is the contradiction we sought: a cycle in the tree
T.= <= Therefore there can be at most one («.b)-path.

(<=} Let G be a graph with the property that between any two vertices there is exactly one
path. We must prove that G is a tree. We leave this for you (Exercise 47.5). =

Theorem 47.4 gives an alternative characterization of trees. We can prove that a graph is
a tree directly by the definition: show that it is connected and acyclic. Alternatively, we can
prove that a graph is a tree by showing that between any two vertices of G there is a unique
path. The next theorem gives yet another characterization of trees.

Theorem 47.5
Let G be a connected graph. Then G is a tree if and only if every edge of G is u cur edge.

Proof. Let G be a connected graph.

(=) Suppose G is a tree. Let e be any edge of G. We must prove that ¢ is a cut edge. Suppose
the endpoints of ¢ are x and v. To prove that e is a cut edge, we must prove that G — e is
disconnected.

Notice that in G there is an (x.v)-path, namely. x ~ vy (traverse just the edge ¢). By
Theorem 47.4. this path is unique-—there can be no other (x.y)-paths. Thus, if we delete the
edge e = xv from G. there can be no (x.y}-paths (i.e., G — e is disconnected). Therefore e is
a cut edge.

(<) Suppose every edge of G is a cut edge. We must prove that G is a tree. By assumption.
G 1s connected, so we must show that G is acyclic.

Suppose. for sake of contradiction, that G contains a cycle C. Let e = xy be an edge of
this cycle. Notice that the vertices and other edges of C form an (x.v)-path. which we call .

Since ¢ 1s a cut edge of G. we know that G — e 1s disconnected. This means there exist
vertices a.b for which there is no (a.b)-path in G — ¢. However. in G. there is an (a.b)-path
Q; hence Q must traverse the edge e. Without loss of generality, we traverse e from x to y as
we step along O:

O=a~- - ~x~y~ --~b

We are nearly finished. Notice that in G — e there is an (a,b)-walk. We traverse Q from «
to x. then P from x to y, and then Q from v to b (see the figure). By Lemma 46.7. this implies
that in G — e there is an {a,b)}-path. contradicting the fact that there is no such path.=<«

Thus G has no cycles and is therefore a tree. ©
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Leaves

In biology. a leaf is a part of the tree that hangs at the “ends™ of the tree. We use the same
word in graph theory to convey a similar idea.

Definition 47.6 {Leaf)
A leaf of a graph is a vertex of degree 1.

Leaves are also called end vertices or pendant vertices. The tree in the figure has four
leaves (marked).

Does every tree have leaves? No. However. the counterexamples are a little silly. The
empty graph and the gruph K are trees. and they have no vertices of degree 1. However,
other than these. every tree has a leaf.

Theorem 47.7

Every tree with ar least rwo vertices has a leaf.

Proof. Let T be a tree with at least two vertices. Let P be a longest path in T (i.e., P is a path
in T and there are no paths in T that are longer). Since 7 is connected and contains at least
two vertices. P has two or more vertices. Say.

P=vg~v) ~ -~y

where ¢ > 1.

We claim that the first and last vertices of P (i.e.. vy and vy) are leaves of T'.

Suppose. for the sake of contradiction. that vg is not a leaf. Since vy has at least one
neighbor (v1), we have that d(vq} > 2. Let x be another neighbor of vq (i.e., x # v} ).

Note that x is not a vertex on P, for otherwise we would have a cycle:

Vo~ V] X~ Vg
Thus we can prepend x to the path P to form the path Q-

Q:,\‘N1’0~1'1~'~'N1'4.

P

However. notice that ¢ is a path in T that is longer than P.= <= Therefore vy is a leaf.
Likewise v is a leaf. Therefore 7 has at least two leaves. ©

In fact, we proved that a tree with at least two vertices must have two (or more) leaves.
Next we prove that plucking a leaf off a tree leaves behind a smaller tree.

Proposition 47 .8
Let T be a tree and let v be a leaf of T. Then T — vis a tree.

A converse of this statement 1s also true; we leave the proof of the converse to you as an
exercise (Exercise 47.7).

Proof. We need 1o prove that T — v is a tree. Clearly T — v is acyclic: If T — v contained a
cycle. that cycle would also exist in T. Thus we must show that 7 — v is connected.

Leta.b € V(T —v). We must show there is an (a.b)-path in T —v. We know, since 7 is
connected, that there is an (a.b)-path P in T. We claim that P does not include the vertex v.
Otherwise we would have

P=a~-~v~-..~b
and since v is neither the first nor last vertex on this path. it has two distinct neighbors on the
path, contradicting the fact that d{v) = |. Therefore P is an {a.b)-pathin T —v.andso T —v
1s connected and a tree. &
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Proposition 47.8 forms the basis of a proof technique for trees. Many proofs about trees
are by induction on the number of vertices. Proof Template 25 gives the basic form for such
a proof.

Proof Template 25 Proving theorems about trees by leaf deletion.

To prove: Some theorem about trees.

Proof. We prove the result by induction on the number of vertices in 7.

Basis case: Claim the theorem is true for all trees on n = | vertices. (This should be easy!)
Induction hypothesis: Suppose the theorem is true for all trees on n = k vertices.

Let 7 be atree on n =k + 1 vertices. Letvbe aleafof T. Let 7" =T —v. Note that T is a
tree with & vertices. so by induction 77 satisties the theorem.

Now we use the fact that the theorem is true tor 77 to somehow prove the conclusion of the
theorem holds tfor T. (This might be tricky.)

Thus the result is proved by induction. =

We demonstrate this proot technique for the following result.

Theorem 47.9

Let T be a tree with n 2 | vertices. Then T has n— 1 edges.
We use Proof Template 25 to prove this result.

Proof. We prove Theorem 47.9 by induction on the number of vertices in 7.

Basis case: Claim the theorem is true for all trees on n = I vertices. If T has only n =1
vertex. then clearly it has 0 = n — 1 edges.

Induction hypothesis: Suppose Theorem 47.9 is true for all trees on n = & vertices.

Let T be a tree on n = &k + 1 vertices. We need to prove that T has n — 1 = k edges.

Let v be a leaf of T and let T/ = T —v. Note that 77 is a tree with & vertices. so by
induction 77 satisties the theorem (i.e.. 7" has & — 1 edges).

Since v is a leat of T. we have d(v) = 1. This means that when we deleted v from 7', we
deleted exactly one edge. Therefore T has one more edge than 77; thatis. T has (k— 1)+ 1=k
edges.

Thus the result 1s proved by induction. ©

Spanning trees

Trees are. in a sense. minimally connected graphs. By definition, they are connected. but (sec
Theorem 47.5) the deletion of any edge disconnects a tree.

Definition 47.10 (Spanning tree)
Let G be a graph. A spanning tree of G 1s a spanning subgraph of G that 1s a tree.

(Recall that a spanning subgraph of G is a subgraph that has the same vertices as G. See
Definition 45.3.)

The definition appears not to say anything because the words spanning tree are perfectly
descriptive. A spanning tree of G is a tree subgraph of G that includes all the vertices of G.
For the graph in the figure. we have highlighted one of its many spanning trees.

Theorem 47.11

A graph has a spanning tree if and only if it is connecied.
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Proof. (=) Suppose G is connected. Let T be a spanning connected subgraph of G with the
fewest number of edges.

We claim that T is a tree. By construction. 7 is connected. Furthermore. we claim that
every edge of T is a cut edge. Otherwise. if e € E(T) were not a cut edge of T. then T — ¢
would be a smaller spanning connected subgraph of G.=-< Therefore every edge of T is a
cut edge. Hence (Theorem 47.5) T is a tree. and so G has a spanning tree.

(+=) Suppose G has a spanning tree 7. We want to show that G is connected. Let u.v € V(G).
Since T 1s spanning, we have V(7)) = V(G), and so u.v € V(T). Since T is connected., there
is a (u,v)-path P in T. Since T is a subgraph of G. P is a (u.v)-path of G. Therefore G is
connected.

We can use this result to provide yet another characterization of trees.

Theorem 47.12

Let G be « connecred graph on n > 1 vertices. Then G is a tree if and only if G lias exacily

n-—-1edges.

Proof. (=) This was shown in Theorem 47.9.

{<=) Suppose G is a connected graph with n vertices and n — 1 edges. By Theorem 47.11,
we know that G has a spanning tree T thatis, T is a tree. V(7)) = V(G). and E(T) C E(G).
Note, however. that

so we actually have E(T) = E(G). Therefore G =T (1.e., Gis a tree). &

Recap

We introduced the notions of cycle, forest. and tree. We proved that the tollowing statements
about a graph & are equivalent:

e Gisatree.

e G isconnected and acyclic.

e G is connected and every edge of G is a cut edge.

e Bertween any two vertices of G there is a unique path.
¢ Gisconnected and [E(G)) = V(G) - 1.

We also introduced the concept of spanning tree and proved that a graph has a spanning
tree if and only if it is connected.

Note: G s, tiself. a spanning connected
subgraph of G. Thus there is at least
one such subgraph. Among all
spanning connected subgraphs. we
choose one with the fewest number of
edges and we call it 7.




