## Chapter 5

### 5.1 Relations

Definition 16 Let $S$ be a set. If $x$ and $y$ are elements of the set $S$, then the pair $(x, y)$ is called an ordered pair of elements in $S$. For the ordered pair, $(x, y), x$ is called the first elment and $y$ is called the second element of the order pair. Two ordered pairs, $(x, y)$ and $(u, v)$ are equal means $x=u$ and $y=v$. The collection of ordered pairs with all elements of the set $S$ as first and second elements is called the Cartesian product of $S$ with itself, denoted by $S \times S$.

Definition 17 Let $S$ and $T$ be sets. $S$ is a subset of $T$ means every element of $S$ is an element of $T$. $S$ is equal to $T$ means $S$ is a subset of $T$ and $T$ is a subset of $S$.

Definition 18 Let $S$ be a set. A relation $R$ on $S$ is any subset of $S \times S$. The domain of the relation $R$ on $S$ is the set of all first elements in $R$ and the range of the relation $R$ on $S$ is the set of all second elements in $R$.

Definition 19 Let $S$ be a set and $R$ be a relation on $S . R$ is called an equivalence relation on $S$ means each of the following is true:

1. For every $x$ in $S,(x, x)$ is in $R$. This is called the reflexive property.
2. If $(x, y)$ is in $R$, then $(y, x)$ is in $R$. This is called the symmetric property.
3. If each of $(x, y)$ and $(y, z)$ is in $R$, then $(x, z)$ is in $R$. This is called the transitive property.

Remark 1 For simplicity, given a set $S$ and an equivalence relation $R$ on $S$, we shall sometimes use the notation $x R y$ to mean $(x, y)$ is in $R$.

Example 1 Let $N$ denote the set of natural numbers and let $S=N \times N$. If each of $(x, y)$ and $(u, v)$ is an element of $S$, we define the relation $R$ on $S$ to be the subset of $S \times S$ such that

$$
R=\{((x, y),(u, v)): x+v=y+u\} .
$$

Show $R$ is an equivalence relation on $S$.

Example 2 Let $N$ denote the set of natural numbers and let $S=N \times N$. If each of $(x, y)$ and $(u, v)$ is an element of $S$, we define the relation $T$ on $S$ to be the subset of $S \times S$ such that

$$
T=\{((x, y),(u, v)): x \cdot v=y \cdot u\}
$$

Show $T$ is an equivalence relation on $S$.
Definition 20 Let $S$ be a set, $R$ be an equivalence relation on $S$, and also let $s$ be an element in $S$. The collection of all elements $y$ in $S$ such that $(s, y)$ is in $R$ is called the equivalence class of $s$, denoted by $s^{R}$.

Example 3 Using Example ?? before, the equivalence classes of each element $(a, b)$ in $S$ contain abitrarily many elements, namely

$$
(a, b)^{R}=\{(x, y): a+y=b+x\} .
$$

List six elements of $(7,8)^{R}$.
Example 4 Using Example 2, list six elements of $(7,8)^{T}$.
Theorem 21 Let $S$ denote a set and $R$ an equivalence relation $S$. If each of $s$ and $t$ is an element of $S$ such that $s R t$, then $s^{R}=t^{R}$.

Theorem 22 Let $S$ denote a set and $R$ an equivalence relation on $S$. If each of $s$ and $t$ are elements of $S$, then either $s^{R}=t^{R}$ or $s^{R}$ and $t^{R}$ have no common elements.

### 5.2 Integers

Definition 21 (From Example1 of the previous section) Let $N$ denote the set of natural numbers and let $S=N \times N$. If each of $(x, y)$ and $(u, v)$ is an element of $S$, define the relation $R$ on $S$ to be the subset of $S \times S$ such that

$$
R=\{((x, y),(u, v)): x+v=y+u\}
$$

We'll say $(x, y) R(u, v)$ to mean the pair $((x, y),(u, v))$ is in $R$.
Theorem 23 The relation $R$ on $S$ from Definition ?? is an equivalence relation on $S$.
Theorem 24 If $R$ is the equivalence relation on $S$ from Definition ??, then for each $(a, b)$ and $(c, d)$ in $S$,

$$
(a, b)^{R}=(c, d)^{R} \text { if and only if } a+d=b+c .
$$

Definition 22 Let $R$ be the equivalence relation on $S$ from Definition ??. Let $Z=\left\{(a, b)^{R}\right.$ : $(a, b)$ is in $S\}$. Each $(a, b)^{R}$ is called an integer and $Z$ is called the set of integers.

Theorem 25 Two integers, $(a, b)^{R}$ and $(c, d)^{R}$, are equal if and only if $a+d=b+c$.

Definition 23 Let $(a, b)^{R}$ and $(c, d)^{R}$ denote integers and define the sum of $(a, b)^{R}$ and $(c, d)^{R}$, denoted by $(a, b)^{R}+(c, d)^{R}$, to be the integer $(a+c, b+d)^{R}$.

Theorem 26 If each of $(a, b)^{R}$ and $(c, d)^{R}$ is an integer, then

$$
(a, b)^{R}+(c, d)^{R}=(c, d)^{R}+(a, b)^{R} .
$$

Theorem 27 For integers, $(a, b)^{R},(c, d)^{R}$, and $(e, f)^{R}$,

$$
(a, b)^{R}+\left((c, d)^{R}+(e, f)^{R}\right)=\left((a, b)^{R}+(c, d)^{R}\right)+(e, f)^{R} .
$$

Remark 2 The integer $(a, a)^{R}$ has an unusual characteristic. It is given in the next theorem. We shall call such a number an additive identity.

Theorem 28 If $(c, d)^{R}$ is any integer, then

$$
(c, d)^{R}+(a, a)^{R}=(c, d)^{R}
$$

Theorem 29 The additive identity for the set of integers is unique and has the form that if $a$ is a natural number, then the additive identity is $(a, a)^{R}$.

Theorem 30 If $(a, b)^{R},(c, d)^{R}$, and $(e, f)^{R}$ are integers, and if $(a, b)^{R}+(e, f)^{R}=(c, d)^{R}+$ $(e, f)^{R}$ then $(a, b)^{R}=(c, d)^{R}$.

Theorem 31 If $(c, d)^{R}$ is an integer, then there exists one and only one integer $(e, f)^{R}$ such that

$$
(c, d)^{R}+(e, f)^{R}=(a, a)^{R}
$$

Definition 24 Given an integer $(c, d)^{R}$, the integer $(e, f)^{R}$ from the above theorem is called the additive inverse of $(c, d)^{R}$ and is denoted by $-(c, d)^{R}$.

### 5.3 Multiplication - Integers

Definition 25 If $(a, b)^{R}$ and $(c, d)^{R}$ are integers, the product of $(a, b)^{R}$ and $(c, d)^{R}$, denoted by $(a, b)^{R} \cdot(c, d)^{R}$, is the integer given by $(a c+b d, a d+b c)^{R}$.

Theorem 32 If $(a, b)^{R}$ and $(c, d)^{R}$ are integers, then

$$
(a, b)^{R} \cdot(c, d)^{R}=(c, d)^{R} \cdot(a, b)^{R} .
$$

Theorem 33 If $(a, b)^{R},(c, d)^{R}$, and $(e, f)^{R}$ are integers, then

$$
\left((a, b)^{R} \cdot(c, d)^{R}\right) \cdot(e, f)^{R}=(a, b)^{R} \cdot\left((c, d)^{R} \cdot(e, f)^{R}\right)
$$

Theorem 34 If $(c, d)^{R}$ is any integer, then

$$
(c, d)^{R} \cdot(a, a)^{R}=(a, a)^{R} .
$$

Definition 26 The integer $(a+1, a)^{R}$ has an important property with respect to multiplication which is given in the next theorem. $(a+1, a)^{R}$ is called a multiplicative identity.

Theorem 35 If $(c, d)^{R}$ is any integer, then

$$
(a+1, a)^{R} \cdot(c, d)^{R}=(c, d)^{R}
$$

Theorem 36 The multiplicative identity for the set of integers is unique.
Theorem 37 For integers $(a, b)^{R},(c, d)^{R}$, and $(e, f)^{R}$,

$$
(a, b)^{R} \cdot\left((c, d)^{R}+(e, f)^{R}\right)=(a, b)^{R} \cdot(c, d)^{R}+(a, b)^{R} \cdot(e, f)^{R} .
$$

### 5.4 Some New Notation

New notation. Given the integer $(a, b)^{R}$, we know that $a, b$ are natural numbers so, by trichotomy, exactly one of the following is true:

1. $a=b$.
2. $a<b$.
3. $a>b$.

We shall simplify our notation for integers $(a, b)^{R}$ in the following way:

1. The symbol 0 denotes the integer $(a, b)^{R}$ when $a=b$.
2. The symbol $+p$ is used to denote the integer $(a, b)^{R}$ when $a>b$ and $p$ is the natural number such that $a=b+p$. Such integers are called positive integers.
3. The symbol $-q$ is used to denote the integer $(a, b)^{R}$ when $a<b$ and $q$ is the natural number such that $a+q=b$. These integers are called negative integers.

### 5.4.1 Exercises

1. Show that $(5,3)^{R}+(2,5)^{R}=(5,6)^{R}$.
2. Show that $(+2)+(-3)=(-1)$.
3. If $n$ is a natural number, then $(n, 2 n)^{R}=-n$.
4. If $n$ is a natural number, then $-(n, 2 n)^{R}=+n$.
5. Prove that the product of two positive integers is a positive integer.
6. Prove that the sum of two negative integers is a negative integer.
7. Prove that the sum of two positive integers is a positive integer.
8. Prove that the product of two negative integers is a positive integer.
9. Prove that the product of a negative integer and a positive integer is a negative integer.
10. Suppose the sum of two natural numbers $a, b$ is the natural number $c$. Prove that

$$
(+a)+(+b)=+c .
$$

11. Suppose the product of two natural numbers $a, b$ is the natural number $c$, prove that

$$
(+a)(+b)=+c .
$$

12. Given natural numbers $a, b$, prove that:
(a) $-((+a)+(+b))=(-a)+(-b)$.
(b) $(+a)+(-b)=-((+b)+(-a))$.

### 5.5 Order - Integers

Definition 27 Given integers $a$ and $b$, we say that $a$ is less than $b$, denoted by $a<b$, provided there is a positive integer $p$ such that $a+p=b$. Also $a>b$ if and only if $b<a$; $a \leq b$ if and only if $a<b$ or $a=b$; and $a \geq b$ if and only if $a>b$ or $a=b$.

Theorem 38 An integer $a$ is positive if and only if $a>0$.
Theorem 39 An integer $a$ is negative if and only if $a<0$.
Theorem 40 If $a$ and $b$ are integers, then exactly one of the following holds:

1. $a=b$.
2. $a<b$.
3. $a>b$.

Theorem 41 Let $a, b$, and $c$ denote integers. If $a<b$ and $b<c$, then $a<c$.
Remark 3 Note that since the integers have both trichotomy and transitive properties, the set of integers is an ordered set.

Theorem 42 If $a, b$, and $c$ are integers and $a<b$, then $a+c<b+c$.
Theorem 43 If $a, b$, and $c$ are integers and $a+c<b+c$, then $a<b$.
Theorem 44 If $a, b$, and $c$ are integers and $a<b$ and $c>0$, then $a c<b c$.
Theorem 45 If $a, b$, and $c$ are integers and $a<b$ and $c<0$, then $a c>b c$.
Theorem 46 If $a, b$, and $c$ are integers, $c$ is not 0 and $a c=b c$, then $a=b$.

### 5.5.1 Exercises

1. If $a$ and $b$ are integers, show that $a b=0$ if and only if $a=0$ or $b=0$.
2. Show there is no integer $a$ such that $2 a=1$.
3. Show that for integers $a$ and $b, a b=1$ if and only if $a=b=1$ or $a=b=-1$.
4. Show that if $a, b, c$ are integers such that $a c<b c$ and $c>0$, then $a<b$.
5. Show that if $a, b, c$ are integers such that $a c<b c$ and $c<0$, then $a>b$.

### 5.6 A New Relation

Theorem 47 Let $Z$ be the set of integers and let $S=Z \times(Z-\{0\})$. Note that if a pair $(a, b)$ is in $S$, then $b$ is not 0 . Prove that the relation $F$ on $S$ given by

$$
F=\{((a, b),(c, d)): a d=b c\}
$$

is an equivalence relation on $S$.
Example 5 Using the relation $F$ above, list six elements in each of the following equivalence class: $(2,3)^{F},(5,1)^{F},(-7,14)^{F},(-6,-2)^{F}$, and $(0,10)^{F}$.

