Chapter 5

5.1 Relations

Definition 16 Let S be a set. If x and y are elements of the set S, then the pair (x, y) is called an ordered pair of elements in S. For the ordered pair, (x, y), x is called the first element and y is called the second element of the order pair. Two ordered pairs, (x, y) and (u, v) are equal means x = u and y = v. The collection of ordered pairs with all elements of the set S as first and second elements is called the **Cartesian product of** S with itself, denoted by $S \times S$.

Definition 17 Let S and T be sets. S is a subset of T means every element of S is an element of T. S is equal to T means S is a subset of T and T is a subset of S.

Definition 18 Let S be a set. A relation R on S is any subset of $S \times S$. The domain of the relation R on S is the set of all first elements in R and the range of the relation R on S is the set of all second elements in R.

Definition 19 Let S be a set and R be a relation on S. R is called an equivalence relation on S means each of the following is true:

- 1. For every x in S, (x, x) is in R. This is called the reflexive property.
- 2. If (x, y) is in R, then (y, x) is in R. This is called the symmetric property.
- 3. If each of (x, y) and (y, z) is in R, then (x, z) is in R. This is called the transitive property.

Remark 1 For simplicity, given a set S and an equivalence relation R on S, we shall sometimes use the notation xRy to mean (x, y) is in R.

Example 1 Let N denote the set of natural numbers and let $S = N \times N$. If each of (x, y) and (u, v) is an element of S, we define the relation R on S to be the subset of $S \times S$ such that

$$R = \{((x, y), (u, v)) : x + v = y + u\}.$$

Show R is an equivalence relation on S.

Example 2 Let N denote the set of natural numbers and let $S = N \times N$. If each of (x, y) and (u, v) is an element of S, we define the relation T on S to be the subset of $S \times S$ such that

$$T=\{((x,y),(u,v)):x\cdot v=y\cdot u\}.$$

Show T is an equivalence relation on S.

Definition 20 Let S be a set, R be an equivalence relation on S, and also let s be an element in S. The collection of all elements y in S such that (s, y) is in R is called the **equivalence** class of s, denoted by s^{R} .

Example 3 Using Example ?? before, the equivalence classes of each element (a, b) in S contain abitrarily many elements, namely

$$(a,b)^R = \{(x,y) : a + y = b + x\}.$$

List six elements of $(7,8)^R$.

Example 4 Using Example 2, list six elements of $(7, 8)^T$.

Theorem 21 Let S denote a set and R an equivalence relation S. If each of s and t is an element of S such that sRt, then $s^R = t^R$.

Theorem 22 Let S denote a set and R an equivalence relation on S. If each of s and t are elements of S, then either $s^R = t^R$ or s^R and t^R have no common elements.

5.2 Integers

Definition 21 (From Example1 of the previous section) Let N denote the set of natural numbers and let $S = N \times N$. If each of (x, y) and (u, v) is an element of S, define the relation R on S to be the subset of $S \times S$ such that

$$R = \{((x,y),(u,v)) : x + v = y + u\}$$

We'll say (x, y)R(u, v) to mean the pair ((x, y), (u, v)) is in R.

Theorem 23 The relation R on S from Definition ?? is an equivalence relation on S.

Theorem 24 If R is the equivalence relation on S from Definition ??, then for each (a, b) and (c, d) in S,

$$(a,b)^R = (c,d)^R$$
 if and only if $a + d = b + c$.

Definition 22 Let R be the equivalence relation on S from Definition ??. Let $Z = \{(a, b)^R : (a, b) \text{ is in } S\}$. Each $(a, b)^R$ is called an integer and Z is called the set of integers.

Theorem 25 Two integers, $(a, b)^R$ and $(c, d)^R$, are equal if and only if a + d = b + c.

Definition 23 Let $(a,b)^R$ and $(c,d)^R$ denote integers and define the sum of $(a,b)^R$ and $(c,d)^R$, denoted by $(a,b)^R + (c,d)^R$, to be the integer $(a+c,b+d)^R$.

Theorem 26 If each of $(a, b)^R$ and $(c, d)^R$ is an integer, then

$$(a,b)^{R} + (c,d)^{R} = (c,d)^{R} + (a,b)^{R}.$$

Theorem 27 For integers, $(a, b)^R$, $(c, d)^R$, and $(e, f)^R$,

$$(a,b)^{R} + ((c,d)^{R} + (e,f)^{R}) = ((a,b)^{R} + (c,d)^{R}) + (e,f)^{R}.$$

Remark 2 The integer $(a, a)^R$ has an unusual characteristic. It is given in the next theorem. We shall call such a number an additive identity.

Theorem 28 If $(c, d)^R$ is any integer, then

$$(c,d)^{R} + (a,a)^{R} = (c,d)^{R}.$$

Theorem 29 The additive identity for the set of integers is unique and has the form that if a is a natural number, then the additive identity is $(a, a)^R$.

Theorem 30 If $(a, b)^R$, $(c, d)^R$, and $(e, f)^R$ are integers, and if $(a, b)^R + (e, f)^R = (c, d)^R + (e, f)^R$ then $(a, b)^R = (c, d)^R$.

Theorem 31 If $(c, d)^R$ is an integer, then there exists one and only one integer $(e, f)^R$ such that

$$(c,d)^{R} + (e,f)^{R} = (a,a)^{R}.$$

Definition 24 Given an integer $(c, d)^R$, the integer $(e, f)^R$ from the above theorem is called the additive inverse of $(c, d)^R$ and is denoted by $-(c, d)^R$.

5.3 Multiplication – Integers

Definition 25 If $(a, b)^R$ and $(c, d)^R$ are integers, the product of $(a, b)^R$ and $(c, d)^R$, denoted by $(a, b)^R \cdot (c, d)^R$, is the integer given by $(ac + bd, ad + bc)^R$.

Theorem 32 If $(a, b)^R$ and $(c, d)^R$ are integers, then

$$(a,b)^R \cdot (c,d)^R = (c,d)^R \cdot (a,b)^R.$$

Theorem 33 If $(a, b)^R$, $(c, d)^R$, and $(e, f)^R$ are integers, then

$$((a,b)^R \cdot (c,d)^R) \cdot (e,f)^R = (a,b)^R \cdot ((c,d)^R \cdot (e,f)^R).$$

Theorem 34 If $(c, d)^R$ is any integer, then

$$(c,d)^R \cdot (a,a)^R = (a,a)^R$$

Definition 26 The integer $(a + 1, a)^R$ has an important property with respect to multiplication which is given in the next theorem. $(a + 1, a)^R$ is called a **multiplicative identity**.

Theorem 35 If $(c, d)^R$ is any integer, then

$$(a+1,a)^R \cdot (c,d)^R = (c,d)^R.$$

Theorem 36 The multiplicative identity for the set of integers is unique.

Theorem 37 For integers $(a, b)^R$, $(c, d)^R$, and $(e, f)^R$,

$$(a,b)^R \cdot ((c,d)^R + (e,f)^R) = (a,b)^R \cdot (c,d)^R + (a,b)^R \cdot (e,f)^R$$

5.4 Some New Notation

New notation. Given the integer $(a, b)^R$, we know that a, b are natural numbers so, by trichotomy, exactly one of the following is true:

1.
$$a = b$$

- 2. a < b.
- 3. a > b.

We shall simplify our notation for integers $(a, b)^R$ in the following way:

- 1. The symbol 0 denotes the integer $(a, b)^R$ when a = b.
- 2. The symbol +p is used to denote the integer $(a, b)^R$ when a > b and p is the natural number such that a = b + p. Such integers are called **positive integers**.
- 3. The symbol -q is used to denote the integer $(a, b)^R$ when a < b and q is the natural number such that a + q = b. These integers are called **negative integers**.

5.4.1 Exercises

- 1. Show that $(5,3)^R + (2,5)^R = (5,6)^R$.
- 2. Show that (+2) + (-3) = (-1).
- 3. If n is a natural number, then $(n, 2n)^R = -n$.
- 4. If n is a natural number, then $-(n, 2n)^R = +n$.
- 5. Prove that the product of two positive integers is a positive integer.
- 6. Prove that the sum of two negative integers is a negative integer.
- 7. Prove that the sum of two positive integers is a positive integer.
- 8. Prove that the product of two negative integers is a positive integer.
- 9. Prove that the product of a negative integer and a positive integer is a negative integer.
- 10. Suppose the sum of two natural numbers a, b is the natural number c. Prove that

$$(+a) + (+b) = +c.$$

11. Suppose the product of two natural numbers a, b is the natural number c, prove that

$$(+a)(+b) = +c$$

- 12. Given natural numbers a, b, prove that:
 - (a) -((+a) + (+b)) = (-a) + (-b).(b) (+a) + (-b) = -((+b) + (-a)).

5.5 Order – Integers

Definition 27 Given integers a and b, we say that a is less than b, denoted by a < b, provided there is a positive integer p such that a + p = b. Also a > b if and only if b < a; $a \le b$ if and only if a < b or a = b; and $a \ge b$ if and only if a > b or a = b.

Theorem 38 An integer a is positive if and only if a > 0.

Theorem 39 An integer a is negative if and only if a < 0.

Theorem 40 If a and b are integers, then exactly one of the following holds:

- 1. a = b.
- 2. a < b.
- 3. a > b.

Theorem 41 Let a, b, and c denote integers. If a < b and b < c, then a < c.

Remark 3 Note that since the integers have both trichotomy and transitive properties, the set of integers is an ordered set.

Theorem 42 If a, b, and c are integers and a < b, then a + c < b + c.

Theorem 43 If a, b, and c are integers and a + c < b + c, then a < b.

Theorem 44 If a, b, and c are integers and a < b and c > 0, then ac < bc.

Theorem 45 If a, b, and c are integers and a < b and c < 0, then ac > bc.

Theorem 46 If a, b, and c are integers, c is not 0 and ac = bc, then a = b.

5.5.1 Exercises

- 1. If a and b are integers, show that ab = 0 if and only if a = 0 or b = 0.
- 2. Show there is no integer a such that 2a = 1.
- 3. Show that for integers a and b, ab = 1 if and only if a = b = 1 or a = b = -1.
- 4. Show that if a, b, c are integers such that ac < bc and c > 0, then a < b.
- 5. Show that if a, b, c are integers such that ac < bc and c < 0, then a > b.

5.6 A New Relation

Theorem 47 Let Z be the set of integers and let $S = Z \times (Z - \{0\})$. Note that if a pair (a, b) is in S, then b is not 0. Prove that the relation F on S given by

$$F=\{((a,b),(c,d)):ad=bc\}$$

is an equivalence relation on S.

Example 5 Using the relation F above, list six elements in each of the following equivalence class: $(2,3)^F$, $(5,1)^F$, $(-7,14)^F$, $(-6,-2)^F$, and $(0,10)^F$.