
Chapter 5

5.1 Relations

Definition 16 Let S be a set. If x and y are elements of the set S, then the pair (x, y) is
called an ordered pair of elements in S. For the ordered pair, (x, y), x is called the first
elment and y is called the second element of the order pair. Two ordered pairs, (x, y) and
(u, v) are equal means x = u and y = v. The collection of ordered pairs with all elements of
the set S as first and second elements is called the Cartesian product of S with itself,
denoted by S × S.

Definition 17 Let S and T be sets. S is a subset of T means every element of S is an
element of T . S is equal to T means S is a subset of T and T is a subset of S.

Definition 18 Let S be a set. A relation R on S is any subset of S × S. The domain of
the relation R on S is the set of all first elements in R and the range of the relation R on
S is the set of all second elements in R.

Definition 19 Let S be a set and R be a relation on S. R is called an equivalence relation
on S means each of the following is true:

1. For every x in S, (x, x) is in R. This is called the reflexive property.

2. If (x, y) is in R, then (y, x) is in R. This is called the symmetric property.

3. If each of (x, y) and (y, z) is in R, then (x, z) is in R. This is called the transitive
property.

Remark 1 For simplicity, given a set S and an equivalence relation R on S, we shall
sometimes use the notation xRy to mean (x, y) is in R.

Example 1 Let N denote the set of natural numbers and let S = N ×N . If each of (x, y)
and (u, v) is an element of S, we define the relation R on S to be the subset of S × S such
that

R = {((x, y), (u, v)) : x + v = y + u}.

Show R is an equivalence relation on S.
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Example 2 Let N denote the set of natural numbers and let S = N ×N . If each of (x, y)
and (u, v) is an element of S, we define the relation T on S to be the subset of S × S such
that

T = {((x, y), (u, v)) : x · v = y · u}.

Show T is an equivalence relation on S.

Definition 20 Let S be a set, R be an equivalence relation on S, and also let s be an element
in S. The collection of all elements y in S such that (s, y) is in R is called the equivalence
class of s, denoted by sR.

Example 3 Using Example ?? before, the equivalence classes of each element (a, b) in S
contain abitrarily many elements, namely

(a, b)R = {(x, y) : a + y = b + x}.

List six elements of (7, 8)R.

Example 4 Using Example 2, list six elements of (7, 8)T .

Theorem 21 Let S denote a set and R an equivalence relation S. If each of s and t is an
element of S such that sRt, then sR = tR.

Theorem 22 Let S denote a set and R an equivalence relation on S. If each of s and t are
elements of S, then either sR = tR or sR and tR have no common elements.

5.2 Integers

Definition 21 (From Example1 of the previous section) Let N denote the set of natural
numbers and let S = N × N . If each of (x, y) and (u, v) is an element of S, define the
relation R on S to be the subset of S × S such that

R = {((x, y), (u, v)) : x + v = y + u}

We’ll say (x, y)R(u, v) to mean the pair ((x, y), (u, v)) is in R.

Theorem 23 The relation R on S from Definition ?? is an equivalence relation on S.

Theorem 24 If R is the equivalence relation on S from Definition ??, then for each (a, b)
and (c, d) in S,

(a, b)R = (c, d)R if and only if a + d = b + c.

Definition 22 Let R be the equivalence relation on S from Definition ??. Let Z = {(a, b)R :
(a, b) is in S}. Each (a, b)R is called an integer and Z is called the set of integers.

Theorem 25 Two integers, (a, b)R and (c, d)R, are equal if and only if a + d = b + c.
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Definition 23 Let (a, b)R and (c, d)R denote integers and define the sum of (a, b)R and
(c, d)R, denoted by (a, b)R + (c, d)R, to be the integer (a + c, b + d)R.

Theorem 26 If each of (a, b)R and (c, d)R is an integer, then

(a, b)R + (c, d)R = (c, d)R + (a, b)R.

Theorem 27 For integers, (a, b)R, (c, d)R, and (e, f)R,

(a, b)R + ((c, d)R + (e, f)R) = ((a, b)R + (c, d)R) + (e, f)R.

Remark 2 The integer (a, a)R has an unusual characteristic. It is given in the next theorem.
We shall call such a number an additive identity.

Theorem 28 If (c, d)R is any integer, then

(c, d)R + (a, a)R = (c, d)R.

Theorem 29 The additive identity for the set of integers is unique and has the form that if
a is a natural number, then the additive identity is (a, a)R.

Theorem 30 If (a, b)R, (c, d)R, and (e, f)R are integers, and if (a, b)R + (e, f)R = (c, d)R +
(e, f)R then (a, b)R = (c, d)R.

Theorem 31 If (c, d)R is an integer, then there exists one and only one integer (e, f)R such
that

(c, d)R + (e, f)R = (a, a)R.

Definition 24 Given an integer (c, d)R, the integer (e, f)R from the above theorem is called
the additive inverse of (c, d)R and is denoted by −(c, d)R.

5.3 Multiplication – Integers

Definition 25 If (a, b)R and (c, d)R are integers, the product of (a, b)R and (c, d)R, denoted
by (a, b)R · (c, d)R, is the integer given by (ac + bd, ad + bc)R.

Theorem 32 If (a, b)R and (c, d)R are integers, then

(a, b)R · (c, d)R = (c, d)R · (a, b)R.

Theorem 33 If (a, b)R, (c, d)R, and (e, f)R are integers, then

((a, b)R · (c, d)R) · (e, f)R = (a, b)R · ((c, d)R · (e, f)R).

Theorem 34 If (c, d)R is any integer, then

(c, d)R · (a, a)R = (a, a)R.
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Definition 26 The integer (a + 1, a)R has an important property with respect to multiplica-
tion which is given in the next theorem. (a + 1, a)R is called a multiplicative identity.

Theorem 35 If (c, d)R is any integer, then

(a + 1, a)R · (c, d)R = (c, d)R.

Theorem 36 The multiplicative identity for the set of integers is unique.

Theorem 37 For integers (a, b)R, (c, d)R, and (e, f)R,

(a, b)R · ((c, d)R + (e, f)R) = (a, b)R · (c, d)R + (a, b)R · (e, f)R.
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5.4 Some New Notation

New notation. Given the integer (a, b)R, we know that a, b are natural numbers so, by
trichotomy, exactly one of the following is true:

1. a = b.

2. a < b.

3. a > b.

We shall simplify our notation for integers (a, b)R in the following way:

1. The symbol 0 denotes the integer (a, b)R when a = b.

2. The symbol +p is used to denote the integer (a, b)R when a > b and p is the natural
number such that a = b + p. Such integers are called positive integers.

3. The symbol −q is used to denote the integer (a, b)R when a < b and q is the natural
number such that a + q = b. These integers are called negative integers.

5.4.1 Exercises

1. Show that (5, 3)R + (2, 5)R = (5, 6)R.

2. Show that (+2) + (−3) = (−1).

3. If n is a natural number, then (n, 2n)R = −n.

4. If n is a natural number, then −(n, 2n)R = +n.

5. Prove that the product of two positive integers is a positive integer.

6. Prove that the sum of two negative integers is a negative integer.

7. Prove that the sum of two positive integers is a positive integer.

8. Prove that the product of two negative integers is a positive integer.

9. Prove that the product of a negative integer and a positive integer is a negative integer.

10. Suppose the sum of two natural numbers a, b is the natural number c. Prove that

(+a) + (+b) = +c.

11. Suppose the product of two natural numbers a, b is the natural number c, prove that

(+a)(+b) = +c.

12. Given natural numbers a, b, prove that:

(a) −((+a) + (+b)) = (−a) + (−b).

(b) (+a) + (−b) = −((+b) + (−a)).
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5.5 Order – Integers

Definition 27 Given integers a and b, we say that a is less than b, denoted by a < b,
provided there is a positive integer p such that a + p = b. Also a > b if and only if b < a;
a ≤ b if and only if a < b or a = b; and a ≥ b if and only if a > b or a = b.

Theorem 38 An integer a is positive if and only if a > 0.

Theorem 39 An integer a is negative if and only if a < 0.

Theorem 40 If a and b are integers, then exactly one of the following holds:

1. a = b.

2. a < b.

3. a > b.

Theorem 41 Let a, b, and c denote integers. If a < b and b < c, then a < c.

Remark 3 Note that since the integers have both trichotomy and transitive properties, the
set of integers is an ordered set.

Theorem 42 If a, b, and c are integers and a < b, then a + c < b + c.

Theorem 43 If a, b, and c are integers and a + c < b + c, then a < b.

Theorem 44 If a, b, and c are integers and a < b and c > 0, then ac < bc.

Theorem 45 If a, b, and c are integers and a < b and c < 0, then ac > bc.

Theorem 46 If a, b, and c are integers, c is not 0 and ac = bc, then a = b.

5.5.1 Exercises

1. If a and b are integers, show that ab = 0 if and only if a = 0 or b = 0.

2. Show there is no integer a such that 2a = 1.

3. Show that for integers a and b, ab = 1 if and only if a = b = 1 or a = b = −1.

4. Show that if a, b, c are integers such that ac < bc and c > 0, then a < b.

5. Show that if a, b, c are integers such that ac < bc and c < 0, then a > b.
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5.6 A New Relation

Theorem 47 Let Z be the set of integers and let S = Z × (Z − {0}). Note that if a pair
(a, b) is in S, then b is not 0. Prove that the relation F on S given by

F = {((a, b), (c, d)) : ad = bc}

is an equivalence relation on S.

Example 5 Using the relation F above, list six elements in each of the following equivalence
class: (2, 3)F , (5, 1)F , (−7, 14)F , (−6,−2)F , and (0, 10)F .


