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Earlier (in Section 44) we presented the classic Seven Bridges of Konigsburg problem. We
explained that it is impossible to walk all seven bridges without retracing a bridge (or taking
a swim across the river) because the multigraph that represents the bridges has more than two
vertices of odd degree.

Consider the two figures shown. The figure on the left has four corners where an odd
number of lines meet. Therefore, it is impossible to draw this figure without lifting your
pencil or redrawing a line. The odd corners must be the first or last points on such a drawing.
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‘The figure on the right, however, has only two comers with an odd number of lines (the
lower two). These points must be the first/last points in a drawing. Can this figure be drawn
without lifting your pencil or retracing a line? Try it! You have an important hint. You must
start at one of the lower two corners. With that hint, it is simple to draw this figure.

In this section, we recast this bridge-walking/figure-drawing problem as a graph theory
problem.

Definition 48.1 {Eulerian trail, tour)

Let G be a graph. A walk in G that traverses every edge exactly once is called an Eulerian
trail. If, in addition, the trail begins and ends at the same vertex, we call the walk an Eulerian
tour. Finally, if G has an Eulerian tour, we call G Eulerian.

The problems we consider are: Which graphs have Eulerian trails? Which graphs have
Eulerian tours (i.e., are Eulerian)? In this section, we give a complete answer.

Necessary conditions

If a graph G has an Eulerian trail, then it is (almost) necessary that G is connected. If the
graph has two (or more) components, it would be impossible for the trail to visit more than
one component, so there is no way we can traverse all the edges of the graph. Impossible, that
1s, unless those additional components did not have any edges to traverse! This can happen if An isolated vertex is a vertex of degree
all (but one) of the components consist of just a single isolated vertex. 0.
Let us call a component of a graph srivial if it contains only one vertex. Otherwise we call
the component nontrivial. Thus the first necessary condition for the existence of an Eulerian
trail is the following:

o If G is Eulerian, then G has at most one nontrivial component.

We revisit the degree conditions. Suppose v is a vertex of a graph G in which there is an
Eulerian trail W. If v is neither the first nor the last vertex on this trail, then we observe that v
must have even degree:

W=1first~ - ~?2~ypy~?~ ... A7yl ~ o P oy ~? ~ -~ ]ast.

Since every edge of the graph is traversed exactly once, and since for every edge entering v
on this tour there is another edge exiting v, it must be the case that d(v) is even.
We therefore have the following:

¢ If G has an Eulerian trail, then it has at most two vertices of odd degree.

What can we say about the degrees of the first and last vertices on the trail? Suppose that
the first and last vertices on the trail are different. The degree of the first vertex on the trail
must be odd by the following reasoning. There is one edge traversed from this vertex when
the trail begins. Then, every other time we visit the first vertex, an entering edge is paired
with an exiting edge. Therefore, its degree must be odd. The same is true for the last vertex
on the trail; its degree must be odd.

o If G has an Eulerian trail that begins at a vertex a and ends a vertex b (with a # b), then
vertices a and b have odd degree.

If the trail begins and ends at the same vertex a, we observe that d(a) must be even. We  Another reason d(a) is even: If d(a)
have one edge exiting a at the start of the tour which matches the final edge entering a at the Were 0dd, it would be the only vertex of
end of the tour. Every other time we visit a, entering and exiting edges pair up, and so, all giir‘i?sgg?; ign"admmg
told, the number of edges incident with a must be even. We therefore have the following:
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e If G has an Eulerian tour (i.e., if G is Eulerian), then all vertices in G have even degree.

We have one last remark to make about Eulerian tours before we present the main theorem
for this section. Suppose we have an Eulerian tour in a connected graph that begins and ends
at a vertex a, and suppose b is the second vertex on this tour:

We can, instead, begin the tour at b, follow the original tour until we get to the last visit to a,
and finish at b; that is,

is also an Eulerian tour starting/ending at b. If we shift the tour repeatedly, we see that we
can begin an Eulerian tour at any vertex we choose.

e If G is a connected Eulerian graph, then G has an Euler tour that begins/ends at any
vertex.

Main theorems

The necessary conditions we just delineated motivate what we seek to prove.

Theorem 48.2
Let G be a connected graph all of whose vertices have even degree. For every vertexv € V(G),
there is an Eulerian tour that begins and ends a1 v.

Theorem 48.3
Ler G be a connected graph with exactly two vertices of odd degree: a and b. Then G has an
Eulerian trail that begins at a and ends at b.

A traditional way to prove these results is first to prove Theorem 48.2, and then use it to
prove Theorem 48.3. We take a different, more interesting, approach. We establish these two
theorems with a single proof! The proof is by induction on the number of edges in the graph.
To prove the two results at the same time, we require a more elaborate induction hypothesis,
but this makes the induction easier-——an example of induction loading.

Proof. We prove both Theorems 48.2 and 48.3 by induction on the number of edges in G.

Basis case: Suppose G has 0 edges. Then G consists of just 1 isolated vertex, v. The walk
(v)—remember: a single vertex by itself is a walk—is an Eulerian trail of G.

(This is a perfectly valid basis case, but it is so simple we do one more unnecessary basis
step to make sure nothing strange is happening here. It also appears to have nothing to do
with Theorem 48.3.)

Another basis case: Suppose G has one edge. Since G is connected, the graph must
consist of just two vertices, a and b, and a single edge joining them. Now G has exactly two
vertices of odd degree, and clearly a ~ b is an Eulerian trail starting at one and ending at the
other.

Induction hypothesis: Suppose a connected graph has m edges. If all of its vertices have
even degree, then there is an Eulerian tour beginning/ending at any vertex. If exactly two of
its vertices have odd degree, then there is an Eulerian trail that begins at one of these vertices
and ends at the other.
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Let G be a connected graph with m + 1 edges.

o Case 1: All of G’s vertices have even degree.

In this case, we must show that we can form an Eulerian tour starting at any vertex of
G. Let v be an arbitrary vertex of G.

Let w be any neighbor of v. Consider the graph G’ = G — vw. Notice that in G’ all
vertices have exactly the same degree as they had in G, except for v and w; their degrees
have decreased by exactly 1. Thus G’ has exactly two vertices of odd degree.

We also assert that G’ is connected. We defer this part of the proof to Lemma 48.4 (see
the Unfinished Business section), which assures us that if all vertices in a graph have
even degree, then no edge is a cut edge.

Here is the lovely part: Since G’ is connected and has exactly two vertices of odd
degree, it has (by induction) an Eulerian trail that begins at w and ends at v.

If we add the edge vw to the beginning of W, the result is an Eulerian tour of G that
begins/ends at v!

e Case 2: Exactly two of G’s vertices, a and b, have odd degree.

‘We must show there is an Eulerian trail that begins at a and ends at b.

- Subcase 2a: Suppose d(a) = 1.
In this case, a has exactly one neighbor, x. It is possible that x = b or x # b. We
check both possibilities.
Let G’ = G — a; that is, delete vertex a (and the one edge incident thereon) from
G. Notice that d(x) drops by 1, while all other vertices have the same degree
as before. Also note that G’ has m edges and is connected (see the proof of
Proposition 47.8).
If x = b, then all vertices in G’ have even degree (a is gone and b’s degree has
changed by 1). Therefore, by induction, G’ has an Eulerian tour W that begins
and ends at vertex b. If we insert the edge ab at the beginning of W, we have
constructed an Eulerian trail that begins at g and ends at b.
If x # b, then G’ has exactly two vertices of odd degree (the degree of x in G is
now odd, and b still has odd degree). Therefore, by induction, there is an Eulerian
trail W that begins at x and ends at b. If we prepend the edge ax to W, we have an
Eulerian trail in G that begins at a and ends at b.

— Subcase 2b: Suppose d{a) > 1.
Since d(a) is odd, we have d(a) > 3. We claim that at least one of the edges
incident with a is not a cut edge (this is proved in Lemma 48.5 in “Unfinished
Business,” below).
Let ax be an edge incident with a that is not a cut edge of G. Let G' = G —ax.
Notice that, just as in subcase 2a, we might have x = b or x # b.
In case x = b, then, just as before, all vertices of G’ have even degree, and we
can form, by induction, an Eulerian tour in G’ that begins/ends at b, and then
prepend the edge ab to form an Eulerian trail in G that begins at a and ends at b,
as required.
In case x # b, then, just as before, we have exactly two vertices of odd degree in
G, namely, x and b. By induction, we form, in G, an Eulerian trail that starts at
x and ends at b. We prepend the edge ax to yield the requisite Euler trail in G.

In all cases, we find the required Eulerian trail/tour in G. ©
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The proof of Theorems 48.2 and 48.3 implicitly gives an algorithm for finding Eulerian
trails in graphs. The algorithm can, rather imprecisely, be expressed as follows: Don’t make
any blatant mistakes. What do we mean by this?

First, if the graph has two vertices of odd degree, you must begin the trail at one of these
vertices.

Second, imagine you are part way through drawing the graph. You are currently at vertex
v and let us suppose H represents the subgraph of the original graph consisting of those edges
you have not yet traversed. Which edge from v should you take? The proof shows that you
can take any edge you like, just as long as it is not a cut edge. Of course, if there is only one
edge of H incident with v, you must take it, but this isn’t a problem; you will never need to
revisit that vertex again!

Unfinished Business

The proof of Theorems 48.2 and 48.3 used the following two resuits.

Lemma 48.4
Let G be a graph all of whose vertices have even degree. Then no edge of G is a cut edge.

Proof. Suppose, for sake of contradiction, e = xy is a cut edge of such a graph. Notice
that G — e has exactly two components (by Theorem 46.12), and each of these components
contains exactly one vertex of odd degree, contradicting Exercise 44.12. ©

Lemma 48.5
Let G be a connected gruph with exactly rwo vertices of odd degree. Let a be a vertex of odd
degree and suppose d(a) # 1. Then at least one of the edges incident with a is not a cut edge.

Proof. Suppose, for sake of contradiction, that all edges incident at a were cut edges. Let b
be the other vertex of odd degree in G.

Since G is connected, there is an (a,b)-path P in G. Exactly one edge incident at a is
traversed by P. Let e be any other edge incident at a.

Now consider the graph G’ = G —e. This graph has exactly two components (Theo-
rem 46.12). Since the path P does not use the edge e, vertices a and b are in the same
component. Notice also that, in G’ vertex a has even degree, and all other vertices in its com-
ponent have not changed degree. This means that, in G’, the component containing vertex a
has exactly one vertex of odd degree, contradicting Exercise 44.12. ©

Recap

Motivated by the Seven Bridges of Konigsburg problem, we defined Eulerian trails and tours
in graphs. We showed that every connected graph with at most two vertices of odd degree has
an Eulerian trail. If there are no vertices of odd degree, it has an Eulerian tour.





