Use words to describe the solution process.  I’ve attached a hint as well as some background information if you are unfamiliar with the material.
[image: image1.png]3. Let G be a complete graph on n vertices. Please calculate:

(a) How many spanning subgraphs does G have?

(b) How many induced subgraphs does G have?




HINT FOR 45.3

[image: image2.png]45.3 For example, the graph K has 2 spanning subgraphs and 4 in-
duced subgraphs. We list them all out here. Let a and b be the
vertices of K.

The spanning subgraphs of K> are the following two graphs:
({a,b},{ab}) and ({a,b},0).
The induced subgraphs of K; are the following four graphs:

({a,b},{ab}) ({a},0)
({5},0) (0,0).




[image: image3.png]If you thought that there were only 3 induced subgraphs of
K3, your answer would be wrong, but not terrible. The graphs
({a},0) and ({b},0) have exactly the same drawing (just one
dot), but these are not the exact same graphs. (In one case, the
sole vertex is a and in the other case the sole vertex is 5.) This
fussiness actually makes this problem easier to solve. There
is a sense in which the graphs ({a},0) and ({b},0) are “the
same;” see Exercise 44.18.

For K3, there are 8 spanning and 8 induced subgraphs.




BACKGROUND INFORMATION IF YOU NEED IT.
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45 Subgraphs

Informally, a subgraph is a graph contained inside another graph. Here is a careful definition.

Definition 45.1 (Subgraph)
Let G and H be graphs. We call G a subgraph of H provided V(G) C V(H) and E(G) C E(H).

Example 45.2
Let G and H be the following graphs:
V(G) = {1,2,3,4,6,7,8} V(H) ={1,2,3,4,5,6,7,8,9}
E(G)={{1.2}.{2.3}.{2.6}.{3.6}.  E(H)={{1,2}.{1.4}.{2,3},{2.5},
{4.7},{6.8},{7.8}} {2.6},{3,6},{3.9}.{4,7},
{5.6},{5,7}.{6,8},{6,9},
{7.8},{8.9}}

Notice that V(G) C V(H) and E(G) € E(H). and so G is a subgraph of H. Pictorially, these
graphs are as follows.

Naturally, if G is a subgraph of H, we call H a supergraph of G.

Induced and spanning subgraphs

We form a subgraph G from a graph H by deleting various parts of H. For example, if e is
an edge of H, then removing e from H results in a new graph we denote H — e. Formally, we

can write this as

Edge deletion.

V(H —e) = V(H)
E(H —¢) = E(H) —{e}.
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If we form a subgraph of H solely by use of edge deletion, the resulting subgraph is called
a spanning subgraph of H. Here is another way to express this.

Definition 45.3 (Spanning subgraph)

Let G and H be graphs. We call G a spanning subgraph of H provided G is a subgraph of H,

and V(G) = V(H).

When G is a spanning subgraph of H, the definition requires that V(G) = V(H); that
is, G and H have all the same vertices. Thus the only allowable deletions from H are edge
deletions,

Example 45.4
Let H be the graph from Example 45.2 and let G be the graph with

V(G)=1{1.2,3.4,5,6,7.8,9}, and
E(G) = {{1,2}.{2.3}.12,5},{2.6},{3,6},{3.9},{5.7},{6,8},{7.8},{8.9} }.

Note that G is a subgraph of H# and, furthermore, that G and H have the same vertex set.

Therefore G is a spanning subgraph of H.
Pictorially, these graphs are as follows.

Deleting vertices from a graph is a more subtle process than deleting edges. Suppose v is
a vertex of a graph H. How shall we define the graph H — v? One idea (incorrect) is to let

V(H-v)=V(H)—{v}, and
E(H —-v)=E(H). «— WARNING! INCORRECT!!

This looks just like the definition of H — e. What is the problem? The problem with this
definition is that there may be edges of H that are incident with v, After we delete v from H,
it does not make sense to have “edges” in H — v that involve the vertex v. Remember: The
edge set of a graph consists of two-element subsets of the vertex set. So an edge with v as an
endpoint is not legal in a graph that does not include v as a vertex.

Let’s try defining H — v again. When we delete v from H, we must delete all edges that
are incident with v; they are not legal to keep once v is gone. Otherwise we retain all the
edges that are not incident with v. Here is the correct definition:

V(H-v)=V(H)-{v}, and
EH-v)y={ecE(H):v¢e}.

In other words, the vertex set of H — v contains all the vertices of H except v. The edge set of
H — v contains all those edges of H that are not incident with v. The notation v ¢ ¢ is a terse
way to write “v is not incident with e.” Recall that e is a two-element set, and v ¢ ¢ means v
is not an element of ¢, (i.e., not an end point of e).

If we form a subgraph of H solely by means of vertex deletion, we call the subgraph an
induced subgraph of H.

Vertex deletion.
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Definition 45.5 (Induced subgraph)
Let H be a graph and let A be a subset of the vertices of H, i.e., A C V(H). The subgraph of
H induced on A is the graph H[A] defined by

V(H[A]) =A, and
E(HA)={xye E(H):x€Aandy € A}.

The set A is the set of vertices we keep. The induced subgraph H|[A] is the graph whose
vertex set is A and whose edges are all those edges of H that are legally possible (i.e., have
both end points in A).

When we say that G is an induced subgraph of H, we mean that G = H|[A] for some
ACV(H).

The graph H — v is an induced subgraph of H. If A = V(H) — {v}, then H —v = H[A].

Example 45.6

Let H be the graph from Example 45.2 and let G be the graph with
V(G)={1,2,3,5,6,7,8}, and
E(G) = {{1,2},{2.3}.{2.5},{2,6},{3.6}.{5.6}.{5.7},{6,8},{7,8} }.

Note that G is a subgraph of H. From H we deleted vertices 4 and 9. We have included in

G every edge of H except. of course, those edges incident with vertices 4 or 9. Thus G is an
induced subgraph of H and

G = HA] where A ={1,2,3,5,6,7,8}.

We can also write G = (H -4}~ 9= (H~9)—4.
Pictorially, these graphs are as follows.

Cligues and independent sets

Definition 45.7 (Clique, cligue number)

Let G be a graph. A subset of vertices S C V(G) is called a clique provided any two distinct
vertices in § are adjacent.

The cligue number of G is the size of a largest clique: it is denoted w(G).

In other words, a set § C V(G) is called a clique provided G[S] is a complete graph.
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The two notions of clique and independent sets are flip sides of the same coin; here we discuss
what it means to “flip the coin.”

The complement of a graph G is a new graph formed by removing all the edges of G and
replacing them by all possible edges that are not in G. Formally, we state this as follows.

Detinition 45.11 (Complement)
Let G be a graph. The complement of G is the graph denoted G defined by

V(G)=V(G), and
E(G)={xy:xyeV(G), x#y xy ¢ E(G)}.

The two graphs in the figure are complements of one another.
The following immediate result makes explicit our assertion that cliques and independent
sets are flip sides of the same coin.

Proposition 45.12
Let G be a graph. A subset of V(G) is a clique of G if and only if it is an independent set of
G. Furthermore,

o(G) = o(G) and  o(G) = o(G).

Let G be a “very large” graph (i.e., a graph with a great many vertices). A celebrated the-
orem in graph theory (known as Ramsey’s Theorem) implies that either G or its complement,
G, must have a “large” clique. Here we prove a special case of this result; the full statement
and general proof of Ramsey’s Theorem can be found in more advanced texts.

Proposition 45.13
Let G be a graph with at least six vertices. Then ©(G) = 3 or o(G) > 3.

The conclusion may also be written: Then ®(G) > 3 or a(G) > 3.

Proof. Let v be any vertex of G. We consider two possibilities: either d(v) > 3 or else
d(v) <3.

Consider first the case d(v) > 3. This means that v has at least three neighbors: Let x,y,z
be three of v’s neighbors. See the figure.

If one (or more) of the possible edges xy, yz, or xz is actually an edge of G, then G contains
a clique of size 3, and so ©(G) > 3.

However, if none of the possible edges xy, yz, or xz is present in G, then all three are edges
of G, and so @(G) > 3.

On the other hand, suppose d(v) < 2. Since there are at least five other vertices in G
(because G has six or more vertices), there must be three vertices to which v is not adjacent:
Call these three nonneighbors x, y, and z. See the figure.

Now if all of xy, yz, xz are edges of G, then clearly G has a clique of size 3, so w(G) > 3.
On the other hand, if one (or more) of xy, yz, or xz is not in G, then we have a clique of size 3
in G, so (G) > 3.

In all, there have been four cases, and in every case, we concluded either ®(G) > 3 or

o(G)>3.©





