6. Convergence. Open and Closed Sets

6.1. Closure of a set. Limit points. By the open sphere (or open ball)
S(xo, r) in a metric space R we mean the set of points x € R satisfying the
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inequality
plxe, x) <r

(p is the metric of R).* The fixed point x, is called the center of the sphere,
and the number r is called its radius. By the closed sphere (or closed ball)
S[x,, r] with center x, and radius r we mean the set of points x € R satisfying
the inequality

o(x0, X) < 1.

An open sphere of radius € with center x, will also be called an e-neighborhood
of x,, denoted by O,(x,).

A point x € R is called a contact point of a set M = R if every neighbor-
hood of x contains at least one point of M. The set of all contact points of a
set M is denoted by [M] and is called the closure of M. Obviously M < [M],
since every point of M is a contact point of M. By the closure operator in
a metric space R, we mean the mapping of R into R carrying each set M < R
into its closure [M].

THEOREM 1. The closure operator has the following properties:

1) If M < N, then [M] < [N];
2) [[M]] = [M];

3) [M VU N]= [M] VU [N];

4 [g]=@.

Proof. Property 1) is obvious. To prove property 2), let x € [[M]].
Then any given neighborhood O, (x) contains a point x; € [M]. Consider
the sphere O, (x,) of radius

& =€ — p(x, 7).
Clearly O, (x,) is contained in O,(x). In fact, if ze€ O, (x,), then

e(z, x;) < &, and hence, since p(x, x;) = € — g, it follows from the
triangle inequality that

plz, X)< e, +(e—g)=c¢,

ie., ze 0.(x). Since x, € [M], there is a point x, € M in O, (x). But
then x, € O,(x) and hence x € [M], since O,(x) is an arbitrary neighbor-
hood of x. Therefore [[M]] = [M]. But obviously [M] < [[M]] and
hence [[M]] = [M], as required.

To prove property 3), let x € [M U N] and suppose x ¢ [M] U [N].
Then x ¢ [M] and x ¢ [N]. But then there exist neighborhoods O, (x)
and O, (x) such that O, (x) contains no points of M while O,,(x) contains

¢ Any confusion between “‘sphere” meant in the sense of spherical surface and *'sphere”
meant in the sense of a solid sphere (or ball) will always be avoided by judicious use of the
adjectives “‘open” or *‘closed.”
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no points of N. It follows that the neighborhood O,(x), where ¢ =
min {4, €2}, contains no points of either M or &, and hence no points
of M U N, contrary to the assumption that x € [M U N]. Therefore
x € [M] Y [N], and hence

[M U N]< [M] U [N], (6Y)

since x is an arbitrary point of [M U N]. On the other hand, since
Mc MUN and N M UN, it follows from property 1) that
M] = MU N]and [N] = [M U N]. But then

[M]V [N] = [M U N],

which together with (1) implies [M U N] = [M] U [N].
Finally, to prove property 4), we observe that given any M < R,

M]=[MU g]=[M]V[z],

by property 3). It follows that [@] < [M]. But this is possible for
arbitrary M only if [#] = @. (Alternatively, the set with no elements
can have no contact points!) [

A point x € Ris called a limit point of a set M < R if every neighborhood
of x contains infinitely many points of M. The limit point may or may not
belong to M. For example, if M is the set of rational numbers in the interval
[0, 1], then every point of [0, 1], rational or not, is a limit point of M.

A point x belonging to a set M is called an isolated point of M if there
is a (“sufficiently small’’) neighborhood of x containing no points of M other
than x itself.

6.2. Convergence and limits. A sequence of points {x,} = x4, X4, ...,
X, ... in a metric space R is said to converge to a point x € R if every
neighborhood O,(x) of x contains all points x,, starting from a certain index
(more exactly, if, given any € > 0, there is an integer N, such that O,(x)
contains all points x,, with # > N,). The point x is called the /imir of the
sequence {x,}, and we write x, — x (as n — c0). Clearly, {x,} converges to
x if and only if

lim p(x, x,) = 0.

n-*w
It is an immediate consequence of the definition of a limit that

1) No sequence can have two distinct limits;
2) If a sequence {x,} converges to a point x, then so does every subse-
quence of {x,}

(give the details).
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THEOREM 2. A necessary and sufficient condition for a point x to be a
contact point of a set M is that there exist a sequence {x,} of points of M
converging to x.

Proof. The condition is necessary, since if x is a contact point of M,
then every neighborhood 0,;,(x) contains at least one point x, € M,
and these points form a sequence {x,} converging to M. The sufficiency
is obvious. |

THEOREM 2'. A necessary and sufficient condition for a point x to be a
limit point of a set M is that there exist a sequence {x,} of distinct points
of M converging to x.

Proof. Clearly, if x is a limit point of M, then the points x, €
0,4a(x) N M figuring in the proof of Theorem 2 can be chosen to be
distinct. This proves the necessity, and the sufficiency is again obvious. |

6.3. Dense subsets. Separable spaces. Let 4 and B be two subsets of a
metric space R. Then A4 is said to be dense in B if [A] = B. In particular,
A is said to be everywhere dense (in R) if [A] = R. A set A4 is said to be
nowhere dense if it is dense in no (open) sphere at all.

Example 1. The set of all rational points is dense in the real line R

Example 2. The set of all points x = (x;, xs, . . . , X,) with rational co-
ordinates is dense in each of the spaces R”, R” and R? introduced in Examples
3-5, pp. 38-39.

Example 3. The set of all points x = (xy, X5, ..., X, ...) with only
finitely many nonzero coordinates, each a rational number, is dense in the
space /, introduced in Example 7, p. 39. '

Example 4. The set of all polynomials with rational coefficients is dense
in both spaces C, ,, and C?, ,, introduced in Examples 6 and 8, pp. 39 and
40.

DEFINITION. A metric space is said to be separable if it has a countable
everywhere dense subset.

Example 5. The spaces R, R", R}, R}, I, C, ), and C}, ,,areallseparable,
since the sets in Examples 1-4 above are all countable.

Example 6. The “discrete space” M described in Example 1, p. 38 con-
tains a countable everywhere dense subset and hence is separable if and only
if it is itself a countable set, since clearly [M] = M in this case.

Example 7. There is no countable everywhere dense set in the space m of
all bounded sequences, introduced in Example 9, p. 41. In fact, consider
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the set £ of all sequences consisting exclusively of zeros and ones. Clearly,
E has the power of the continuum (recall Theorem 6, Sec. 2.5), since there
is a one-to-one correspondence between E and the set of all subsets of the
set Z, ={1,2,...,n,...} (describe the correspondence). According to
formula (12), p. 41, the distance between any two points of E equals 1.
Suppose we surround each point of E by an open sphere of radius 1, thereby
obtaining an uncountably infinite family of pairwise disjoint spheres. Then
if some set M is everywhere dense in m, there must be at least one point of
M in each of the spheres. It follows that M cannot be countable and hence
that m cannot be separable.

6.4. Closed sets. We say that a subset M of a metric space R is closed if it
coincides with its own closure, i.e., if [M] = M. In other words, a set is
called closed if it contains all its limit points (see Problem 2).

Example 1. The empty set & and the whole space R are closed sets.
Example 2. Every closed interval [a, b] on the real line is a closed set.

Example 3. Every closed sphere in a metric space is a closed set. In
particular, the set of all functions f in the space Clasp Such that (1) < K
(where K is a constant) is closed.

Example 4. The set of all functions f in Cl,.p7 Such that |f()] < K (an
open sphere) is not closed. The closure of this set is the closed sphere in the
preceding example.

Example 5. Any set consisting of a finite number of points is closed.

THEOREM 3. The intersection of an arbitrary number of closed sets is
closed. The union of a finite number of closed sets is closed.

Proof. Given arbitrary sets F, indexed by a parameter a, let x be a
limit point of the intersection

F=NF,.

Then any neighborhood O,(x) contains infinitely many points of F, and
hence infinitely many points of each F,. Therefore x is a limit point of
each F, and hence belongs to each F,, since the sets F, are all closed.
It follows that x € F, and hence that F itself is closed.

Next let

be the union of a finite number of closed sets F, and suppose x does
not belong to F. Then x does not belong to any of the sets Fy, and hence
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cannot be a limit point of any of them. But then, for every k, there is a
neighborhood O,,(x) containing no more than a finite number of points
of F,. Choosing

e =min{g,...,&,},

we get a neighborhood 0,(x) containing no more than a finite number of
points of F, so that x cannot be a limit point of F. This proves that a
point x ¢ F cannot be a limit point of F. Therefore Fis closed. [

6.5. Open sets. A point x is called an interior point of a set M if x has a
neighborhood O,(x) < M, i.e., a neighborhood consisting entirely of points
of M. A set is said to be open if its points are all interior points.

Example 1. Every open interval (a, b) on the real line is an open set. In
fact, if @ << x < b, choose ¢ = min {x — a, b — x}. Then clearly O,(x) <
(a, b).

Example 2. Every open sphere S(a, r) in a metric space is an open set. '
In fact, x € S(a, r) implies p(a, x) < r. Hence, choosinge = r — p(a, x), we
have O,(x) = S(x, ) < S(a, r).

Example 3. Let M be the set of all functions f in C, ,, such that f (f) <
g(t), where g is a fixed function in C, ;,. Then M is an open subset of C_ ,,.

THEOREM 4. A subset M of a metric space R is open if and only if its
complement R — M is closed.

Proof. If M is open, then every point x € M has a neighborhood
(entirely) contained in M. Therefore no point x € M can be a contact
point of R — M. In other words, if x is a contact point of R — M,
then xe R — M, i.e., R — M is closed. -

Conversely, if R — M is closed, then any point x € M must have a
neighborhood contained in M, since otherwise every neighborhood of x
would contain points of R — M, i.e., x would be a contact point of
R — M not in R — M. Therefore M is open. [

COROLLARY. The empty set & and the whole space R are open sets.

Proof. An immediate consequence of Theorem 4 and Example 1,
Sec. 6.4. |

THEOREM 5. The union of an arbitrary number of open sets is open. The
intersection of a finite number of open sets is open.

Proof. This is the “dual” of Theorem 3. The proof is an immediate
consequence of Theorem 4 and formulas (3)-(4), p.- 4. ||
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6.6. Open and closed sets on the real line. The structure of open and closed
sets in a given metric space can be quite complicated. This is true even for
open and closed sets in a Euclidean space of two or more dimensions
(R, n > 2). In the one-dimensional case, however, it is an easy matter to
give a complete description of all open sets (and hence of all closed sets):

THEOREM 6. Every open set G on the real line is the union of a finite or
countable system of pairwise disjoint open intervals.®

Proof. Let x be an arbitrary point of G. By the definition of an open
set, there is at least one open interval containing x and contained in G.
Let I, be the union of all such open intervals. Then, as we now show, I,
is itself an open interval. In fact, let®

a = inf I, b=supl,
(where we allow the cases a = —o0 and b = 4-00). Then obviously
I; < (a, b). @

Moreover, suppose y is an arbitrary point of (a, b) distinct from x,
where, to be explicit, we assume that a < y << x. Then there is a point
y' €1, such thata < y" < y (why?). Hence G contains an open interval
containing the points y" and x. But then this interval also contains y,
ie., y€l,. (The case y > x is treated similarly.) Moreover, the point
x belongs to I, by hypothesis. It follows that I, = (a, b), and hence by
(2) that I, = (a, b). Thus I, is itself an open interval, as asserted, in fact
the open interval (g, b).

By its very construction, the interval (a, b) is contained in G and is
not a subset of a larger interval contained in G. Moreover, it is clear
that two intervals I, and I, corresponding to distinct points x and x’
either coincide or else are disjoint (otherwise I, and I,. would both be
contained in a larger interval I, U I, = I < G. There are no more than
countably many such pairwise disjoint intervals Z,. In fact, choosing an
arbitrary rational point in each ,, we establish a one-to-one correspond-
ence between the intervals I, and a subset of the rational numbers.
Finally, it is obvious that /

¢=Ur,. |

COROLLARY. Every closed set on the real line can be obtained by deleting
a finite or countable system of pairwise disjoint intervals from the line.

* The infinite intervals (— oo, o), (a, ©), and (— oo, b) are regarded as open.
° Given a set of real numbers E, inf E denotes the greatest lower bound or infimum
of E, while sup £ denotes the least upper bound or supremum of E.
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Proof. An immediate consequence of Theorems 4 and 6. ||

Example 1. Every closed interval [a, b] is a closed set (here a and b are
necessarily finite).

Example 2. Every single-element set {x,} is closed.

Example 3. The union of a finite number of closed intervals and single-
element sets is a closed set.

Examnple 4 (The Cantor set). A more interesting example of a closed set
on the line can be constructed as follows: Delete the open interval (%, %)
from the closed interval F, = [0, 1], and let F, denote the remaining closed
set, consisting of two closed intervals. Then delete the open intervals
(4, 2) and (%, &) from F,, and let F, denote the remaining closed set, con-
sisting of four closed intervals. Then delete the “middle third™ from each
of these four intervals, getting a new closed set Fy, and so on (see Figure 9).
Continuing this process indefinitely, we get a sequence of closed sets F, such
that

FpboFi>2F>-DF, 2

(such a sequence is said to be decreasing). The intersection

- 4]
F=NF,
n=0
of all these sets is called the Cantor set. Clearly F is closed, by Theorem 3,
and is obtained from the unit interval [0, 1] by deleting a countable number
of open intervals. In fact, at the nth stage of the construction, we delete
271 intervals, each of length 1/3~.
To describe the structure of the set F, we first note that F contains the
points

0! 1! %9 %! %’ .92—, %! %, L D (3) 4
i.e., the end points of the deleted intervals (together with the points 0 and 1).
|

0 g
0 i e 1

3 3 £
o 4+ 2z 4 2 1 8

B S A 3. & & 7 5

- T~ - T A

a= ra—— -—— - - -- &

FIGURE 9
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However F contains many other points. In fact, given any x & [0, 1], suppose
we write x in ternary notation, representing x as a series

=B e g B 4
e L - (4)

where each of the numbers a;, @,, . . . , a,, . . . can only take one of the three
values 0, 1, 2. Then it is easy to see that x belongs to F'if and only if x has a
representation (4) such that none of the numbers a,, @, . .. , g,,, . . . equals
1 (think things through).”

Remarkably enough, the set F has the power of the continuum, i.e.,
there are as many points in F as in the whole interval [0, 1], despite the fact
that the sum of the lengths of the deleted intervals equals

t+3 +sk =1,
To see this, we associate a new point

by

y = ba
2

by L ba .
G 5 I + on =
with each point (4), where®

b=

n

0 if a,=0,
1 i ay=—2

In this way, we set up a one-to-one correspondence between F and the whole
interval [0, 1]. It follows that F has the power of the continuum, as asserted.
Let 4, be the set of points (3). Then F = 4, U A,, where theset 4, = F — A,
is uncountable, since 4, is countable and F itself is not. The points of 4,
are often called “points (of F) of the first kind,”” while those of 4, are called
“points of the second kind.”

Problem 1. Give an example of a metric space R and two open spheres
8(x, ry) and S(y, r,) in R such that S(x,ry) < S(y, ry) although r; > r,.

Problem 2. Prove that every contact point of a set M is either a limit point
of M or an isolated point of M.

—

_ "Just as in the case of ordinary decimals, certain numbers can be written in two
distinct ways. For example,

0 0 0
et — e =

1 2 2
338 " 38 3»

2
3_=+3_3+...+¥i+-1-

wl o

1
3 *
Since none of the numerators in the second representation equals 1 the point  belongs
1o F (this is already obvious from the construction of F).

*If x has two representations of the form (4), then one and only one of them has no
Dumerators g,, ay, . . ., @, . . . equal to 1. These are the numbers used to define b,.
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Comment. In particular, [M] can only contain points of the following
three types:

a) Limit points of M belonging to M;
b) Limit points of M which do not belong to M;
c) Isolated points of M.

Thus [M] is the union of M and the set of all its limit points.

Problem 3. Prove that if x, — x, y, — y as n — oo, then p(x,, y,) —
p(x, ¥)-
Hint. Use Problem 1a, p. 45.

Problem 4. Let f be a mapping of one metric space X into another metric
space Y. Prove that f'is continuous at a point x, if and only if the sequence
{yu} = {f(x,)} converges to y = f(x,) whenever the sequence {x,} con-
verges to x,.

Problem 5. Prove that

a) The closure of any set M is a closed set;
b) [M] is the smallest closed set containing M.

Problem 6. Is the union of infinitely many closed sets necessarily closed ?
How about the intersection of infinitely many open sets? Give examples.

Problem 7. Prove directly that the point } belongs to the Cantor set F, ‘
although it is not an end point of any of the open intervals deleted in con-
structing F.

Hint. The point } divides the interval [0, 1] in the ratio 1:3. It also
divides the interval [0, }] left after deleting (}, %) in the ratio 3:1, and so on.

Problem 8. Let F be the Cantor set. Prove that

a) The points of the first kind, i.e., the points (3) form an everywhere
dense subset of F;
b) The numbers of the form #; + #,, where #,, #, € F, fill the whole interval
[0, 2].
Problem 9. Given a metric space R, let 4 be a subset of R and x a point
of R. Then the number
p(4, x) = inf p(a, x)
aed

is called the distance between A and x. Prove that

a) x € A implies p(4, x) = 0, but not conversely;

b) o(4, x) is a continuous function of x (for fixed 4);

¢) p(4,x) = 0if and only if x is a contact point of 4;

d) [A] = A U M, where M is the set of all points x such that p(4, x) = 0.
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Problem 10. Let 4 and B be two subsets of a metric space R. Then the
numbcr
(4, B) = inf p(a, b)
acA
beB

is called the distance between A and B. Show that (4, B) = 0if 4 N B +# &,
but not conversely.

Problem 11. Let My be the set of all functions f in C, ,, satisfying a
Lipschitz condition, i.e., the set of all f such that

If(t) — f(B) < K|t; — &
for all #;, t, € [a, b], where K is a fixed positive number. Prove that

a) My is closed and in fact is the closure of the set of all differentiable
functions on [a, b] such that | f'(r)| < K
b) The set
M= U MK
K

of all functions satisfying a Lipschitz condition for some K is not
closed;

c) The closure of M is the whole space C, ;.

Problem 12. An open set G in n-dimensional Euclidean space R® is said
to be connected if any points x, y € G can be joined by a polygonal line®
lying entirely in G. For example, the (open) disk x? 4 y* << 1 is connected,
but not the union of the two disks

x2 4yt <1, x—2t4+y2<1

(even though they share a contact point). An open subset of an open set G
is called a component of G if it is connected and is not contained in a larger
connected subset of G. Use Zorn’s lemma to prove that every open set G in
R® is the union of no more than countably many pairwise disjoint com-
ponents.

Comment. In the case n = 1 (i.e., on the real line) every connected open
set is an open interval, possibility one of the infinite intervals (—co, o0),
(a, @), (—co, b). Thus Theorem 6 on the structure of open sets on the line
is tantamount to two assertions:

1) Every open set on the line is the union of a finite or countable number
of components;
2) Every open connected set on the line is an open interval.

_ "By a polygonal line we mean a curve obtained by joining a finite number of straight
line segments end to end.
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The first assertion holds for open sets in R* (and in fact is susceptible to
further generalizations), while the second assertion pertains specifically to
the real line.
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